这是一道动态点分治好题。
在点分树上,对于每个点,维护两个树状数组,一个维护离点分中心距离不超过某个值的点权和,另一个维护离点分中心的父亲距离不超过某个值的点权和。注意树状数组的大小不必开到联通子树的大小,而是离某个定点的距离最大值就行了。
最后bzoj上好像是rk11?看来跑得还挺快的。
#include<cstdio>
#include<utility>
#include<vector>
#include<cstring>
#include<cctype>
using namespace std;
const int N=200005;
inline char read() {
static const int IN_LEN = 1000000;
static char buf[IN_LEN], *s, *t;
if (s == t) {
t = (s = buf) + fread(buf, 1, IN_LEN, stdin);
if (s == t) return -1;
}
return *s++;
}
template<class T>
inline void read(T &x) {
static bool iosig;
static char c;
for (iosig = false, c = read(); !isdigit(c); c = read()) {
if (c == '-') iosig = true;
if (c == -1) return;
}
/* 这里这么写的原因见下 */
for (x = 0; isdigit(c); c = read())
x = (x + (x << 2) << 1) + (c ^ '0');
if (iosig) x = -x;
}
const int OUT_LEN = 10000000;
char obuf[OUT_LEN], *oh = obuf;
inline void print(char c) {
if (oh == obuf + OUT_LEN) fwrite(obuf, 1, OUT_LEN, stdout), oh = obuf;
*oh++ = c;
}
template<class T>
inline void print(T x) {
static int buf[30], cnt;
if (x == 0) {
print('0');
} else {
if (x < 0) print('-'), x = -x;
for (cnt = 0; x; x /= 10) buf[++cnt] = x % 10 + 48;
while (cnt) print((char)buf[cnt--]);
}
}
inline void flush() {
fwrite(obuf, 1, oh - obuf, stdout);
}
struct BIT{
int*a,n;
inline void init(){
a=new int[n];memset(a,0,n<<2);
--a;
}
inline void add(int x,int v){++x;
for(register int i=x;i<=n;i+=i&-i)a[i]+=v;
}
inline int query(int x){++x;
register int s=0,i=x;for(;i;i^=i&-i)s+=a[i];return s;
}
};
inline void up(int&a,int b){if(a<b)a=b;}
inline int min(int a,int b){return a>b?b:a;}
int n,m,i,v[N],x,y,o,la;
template<class T> struct vec{
T *a;
int n;
void clear(){
if(n>0)delete[]a,a=0,n=0;
}
void push_back(const T&x){
if((n&-n)==n){
T*_a=new T[n*2+1];
memcpy(_a,a,n*sizeof(T));
delete[]a;
a=_a;
}
a[n++]=x;
}
T&operator[](const int&x){
return a[x];
}
inline int size(){return n;}
};
struct tree{
struct edge{
int to,next;
}e[N<<1];
int h[N],xb,f[N],sz[N],sum,rt;
bool b[N];
vec<pair<int,int> > d[N];
BIT a[N],c[N];
inline void addedge(int u,int v){
e[++xb]=(edge){v,h[u]},h[u]=xb;
e[++xb]=(edge){u,h[v]},h[v]=xb;
}
void dfs(int x,int fa){
sz[x]=f[x]=1;
for(int i=h[x];i;i=e[i].next)
if(e[i].to!=fa && !b[e[i].to])dfs(e[i].to,x),sz[x]+=sz[e[i].to],up(f[x],sz[e[i].to]);
up(f[x],sum-sz[x]);if(f[x]<f[rt])rt=x;
}
void getdis(int x,int f,int dd){
d[x].push_back(make_pair(dd,rt));
for(int i=h[x];i;i=e[i].next)if(e[i].to!=f && !b[e[i].to])getdis(e[i].to,x,dd+1);
}
inline void work(int x){
b[x]=1;getdis(x,0,0);int ts=sum;
for(int i=h[x];i;i=e[i].next)
if(!b[e[i].to])
sum=sz[e[i].to]>sz[x]?ts-sz[x]:sz[e[i].to],dfs(e[i].to,rt=0),work(rt);
}
inline void add(int x,int y){
register int i;
for(i=d[x].size()-1;i>=0;--i)
a[d[x][i].second].add(d[x][i].first,y);
for(i=d[x].size()-1;i;--i)
c[d[x][i].second].add(d[x][i-1].first,y);
}
inline void fix(int x){
register int i;
for(i=d[x].size()-1;i>=0;--i)
up(a[d[x][i].second].n,1+d[x][i].first);
for(i=d[x].size()-1;i;--i)
up(c[d[x][i].second].n,1+d[x][i-1].first);
}
inline int query(int x,int y){
register int i=d[x].size()-1,ans=a[x].query(min(y,a[x].n-1)),p,q;
for(;i;--i){
p=d[x][i].second,q=d[x][i-1].second;
if(y>=d[x][i-1].first){
ans+=a[q].query(min(y-d[x][i-1].first,a[q].n-1));
ans-=c[p].query(min(y-d[x][i-1].first,c[p].n-1));
}
}
return ans;
}
inline void prepare(){
sum=n,*f=1<<30,dfs(1,0);work(rt);register int i=1;
for(;i<=n;++i)fix(i);
for(i=1;i<=n;++i)a[i].init(),c[i].init();
for(i=1;i<=n;++i)
add(i,v[i]);
}
}t;
int main(){
read(n),read(m);for(i=1;i<=n;++i)read(v[i]);
for(i=1;i<n;++i)read(x),read(y),t.addedge(x,y);
t.prepare();
while(m--){
read(o),read(x),read(y);x^=la,y^=la;
if(o)t.add(x,y-v[x]),v[x]=y;
else print(la=t.query(x,y)),print('\n');
}
return flush(),0;
}