机器学习实战笔记(Python)-01-K近邻算法(KNN)

 

正文

1 算法概述

1.1 算法特点

简单地说,k-近邻算法采用测量不同特征值之间的距离方法进行分类。

优点:精度高、对异常值不敏感、无数据输入假定

缺点:计算复杂度高、空间复杂度高

适用数据范围:数值型和标称型

 

1.2 工作原理

存在一个训练样本集,并且每个样本都存在标签(有监督学习)。输入没有标签的新样本数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取出与样本集中特征最相似的数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,而且k通常不大于20。最后选择k个最相似数据中出现次数最多的分类,作为新数据的分类。

 

1.3 实例解释

以电影分类为例子,使用k-近邻算法分类爱情片和动作片。有人曾经统计过很多电影的打斗镜头和接吻镜头,下图显示了6部电影的打斗和接吻镜头数。 假如有一部未看过的电影,如何确定它是爱情片还是动作片呢? 

①首先需要统计这个未知电影存在多少个打斗镜头和接吻镜头,下图中问号位置是该未知电影出现的镜头数 

②之后计算未知电影与样本集中其他电影的距离(相似度),具体算法先忽略,结果如下表所示:

③将相似度列表排序,选出前k个最相似的样本。此处我们假设k=3,将上表中的相似度进行排序后前3分别是:He’s Not Really into Dudes,Beautiful Woman,California Man。
④统计最相似样本的分类。此处很容易知道这3个样本均为爱情片。
⑤将分类最多的类别作为未知电影的分类。那么我们就得出结论,未知电影属于爱情片。

2 代码实现

2.1 k-近邻简单分类的应用

2.1.1 算法一般流程

2.1.2 Python实现代码及注释 

#coding=UTF8
from numpy import *
import operator

def createDataSet():
    """
    函数作用:构建一组训练数据(训练样本),共4个样本
    同时给出了这4个样本的标签,及labels
    """
    group = array([
        [1.0, 1.1],
        [1.0, 1.0],
        [0. , 0. ],
        [0. , 0.1]
    ])
    labels = ['A', 'A', 'B', 'B']
    return group, labels

def classify0(inX, dataset, labels, k):
    """
    inX 是输入的测试样本,是一个[x, y]样式的
    dataset 是训练样本集
    labels 是训练样本标签
    k 是top k最相近的
    """
    # shape返回矩阵的[行数,列数],
    # 那么shape[0]获取数据集的行数,
    # 行数就是样本的数量
    dataSetSize = dataset.shape[0] 
    
    """
    下面的求距离过程就是按照欧氏距离的公式计算的。
    即 根号(x^2+y^2)
    """
    # tile属于numpy模块下边的函数
    # tile(A, reps)返回一个shape=reps的矩阵,矩阵的每个元素是A
    # 比如 A=[0,1,2] 那么,tile(A, 2)= [0, 1, 2, 0, 1, 2]
    # tile(A,(2,2)) = [[0, 1, 2, 0, 1, 2],
    #                  [0, 1, 2, 0, 1, 2]]
    # tile(A,(2,1,2)) = [[[0, 1, 2, 0, 1, 2]],
    #                    [[0, 1, 2, 0, 1, 2]]] 
    # 上边那个结果的分开理解就是:
    # 最外层是2个元素,即最外边的[]中包含2个元素,类似于[C,D],而此处的C=D,因为是复制出来的
    # 然后C包含1个元素,即C=[E],同理D=[E]
    # 最后E包含2个元素,即E=[F,G],此处F=G,因为是复制出来的
    # F就是A了,基础元素
    # 综合起来就是(2,1,2)= [C, C] = [[E], [E]] = [[[F, F]], [[F, F]]] = [[[A, A]], [[A, A]]]
    # 这个地方就是为了把输入的测试样本扩展为和dataset的shape一样,然后就可以直接做矩阵减法了。
    # 比如,dataset有4个样本,就是4*2的矩阵,输入测试样本肯定是一个了,就是1*2,为了计算输入样本与训练样本的距离
    # 那么,需要对这个数据进行作差。这是一次比较,因为训练样本有n个,那么就要进行n次比较;
    # 为了方便计算,把输入样本复制n次,然后直接与训练样本作矩阵差运算,就可以一次性比较了n个样本。
    # 比如inX = [0,1],dataset就用函数返回的结果,那么
    # tile(inX, (4,1))= [[ 0.0, 1.0],
    #                    [ 0.0, 1.0],
    #                    [ 0.0, 1.0],
    #                    [ 0.0, 1.0]]
    # 作差之后
    # diffMat = [[-1.0,-0.1],
    #            [-1.0, 0.0],
    #            [ 0.0, 1.0],
    #            [ 0.0, 0.9]]
    diffMat = tile(inX, (dataSetSize, 1)) - dataset
    
    # diffMat就是输入样本与每个训练样本的差值,然后对其每个x和y的差值进行平方运算。
    # diffMat是一个矩阵,矩阵**2表示对矩阵中的每个元素进行**2操作,即平方。
    # sqDiffMat = [[1.0, 0.01],
    #              [1.0, 0.0 ],
    #              [0.0, 1.0 ],
    #              [0.0, 0.81]]
    sqDiffMat = diffMat ** 2
    
    # axis=1表示按照横轴,sum表示累加,即按照行进行累加。
    # sqDistance = [[1.01],
    #               [1.0 ],
    #               [1.0 ],
    #               [0.81]]
    sqDistance = sqDiffMat.sum(axis=1)
    
    # 对平方和进行开根号
    distance = sqDistance ** 0.5
    
    # 按照升序进行快速排序,返回的是原数组的下标。
    # 比如,x = [30, 10, 20, 40]
    # 升序排序后应该是[10,20,30,40],他们的原下标是[1,2,0,3]
    # 那么,numpy.argsort(x) = [1, 2, 0, 3]
    sortedDistIndicies = distance.argsort()
    
    # 存放最终的分类结果及相应的结果投票数
    classCount = {}
    
    # 投票过程,就是统计前k个最近的样本所属类别包含的样本个数
    for i in range(k):
        # index = sortedDistIndicies[i]是第i个最相近的样本下标
        # voteIlabel = labels[index]是样本index对应的分类结果('A' or 'B')
        voteIlabel = labels[sortedDistIndicies[i]]
        # classCount.get(voteIlabel, 0)返回voteIlabel的值,如果不存在,则返回0
        # 然后将票数增1
        classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1
    
    # 把分类结果进行排序,然后返回得票数最多的分类结果
    sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
    return sortedClassCount[0][0]

if __name__== "__main__":
    # 导入数据
    dataset, labels = createDataSet()
    inX = [0.1, 0.1]
    # 简单分类
    className = classify0(inX, dataset, labels, 3)
    print('the class of test sample is %s' %className)

2.2 在约会网站上使用k-近邻算法

2.2.1 算法一般流程

2.2.2 Python实现代码

datingTestSet.txt 文件中有1000行的约会数据,样本主要包括以下3种特征:

  • 每年获得的飞行常客里程数
  • 玩视频游戏所耗时间百分比
  • 每周消费的冰淇淋公升数

上述特征数据输人到分类器之前,必须将待处理数据的格式改变为分类器可以接受的格式 。在kNN.py中创建名为 file2matrix 的函数,以此来处理输人格式问题。该函数的输人为文件名字符串输出为训练样本矩阵和类标签向量。autoNorm 为数值归一化函数,将任意取值范围的特征值转化为0到1区间内的值。最后,datingClassTest 函数是测试代码。

将下面的代码增加到kNN.py 

def file2matrix(filename):
    """
    从文件中读入训练数据,并存储为矩阵
    """
    fr = open(filename)
    arrayOlines = fr.readlines()
    numberOfLines = len(arrayOlines)   #获取 n=样本的行数
    returnMat = zeros((numberOfLines,3))   #创建一个2维矩阵用于存放训练样本数据,一共有n行,每一行存放3个数据
    classLabelVector = []    #创建一个1维数组用于存放训练样本标签。  
    index = 0
    for line in arrayOlines:
        # 把回车符号给去掉
        line = line.strip()    
        # 把每一行数据用\t分割
        listFromLine = line.split('\t')
        # 把分割好的数据放至数据集,其中index是该样本数据的下标,就是放到第几行
        returnMat[index,:] = listFromLine[0:3]
        # 把该样本对应的标签放至标签集,顺序与样本集对应。
        classLabelVector.append(int(listFromLine[-1]))
        index += 1
    return returnMat,classLabelVector
    
def autoNorm(dataSet):
    """
    训练数据归一化
    """
    # 获取数据集中每一列的最小数值
    # 以createDataSet()中的数据为例,group.min(0)=[0,0]
    minVals = dataSet.min(0) 
    # 获取数据集中每一列的最大数值
    # group.max(0)=[1, 1.1]
    maxVals = dataSet.max(0) 
    # 最大值与最小的差值
    ranges = maxVals - minVals
    # 创建一个与dataSet同shape的全0矩阵,用于存放归一化后的数据
    normDataSet = zeros(shape(dataSet))
    m = dataSet.shape[0]
    # 把最小值扩充为与dataSet同shape,然后作差,具体tile请翻看 第三节 代码中的tile
    normDataSet = dataSet - tile(minVals, (m,1))
    # 把最大最小差值扩充为dataSet同shape,然后作商,是指对应元素进行除法运算,而不是矩阵除法。
    # 矩阵除法在numpy中要用linalg.solve(A,B)
    normDataSet = normDataSet/tile(ranges, (m,1))
    return normDataSet, ranges, minVals
   
def datingClassTest():
    # 将数据集中10%的数据留作测试用,其余的90%用于训练
    hoRatio = 0.10
    datingDataMat,datingLabels = file2matrix('datingTestSet2.txt')       #load data setfrom file
    normMat, ranges, minVals = autoNorm(datingDataMat)
    m = normMat.shape[0]
    numTestVecs = int(m*hoRatio)
    errorCount = 0.0
    for i in range(numTestVecs):
        classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)
        print("the classifier came back with: %d, the real answer is: %d, result is :%s" % (classifierResult, datingLabels[i],classifierResult==datingLabels[i]))
        if (classifierResult != datingLabels[i]): errorCount += 1.0
    print("the total error rate is: %f" % (errorCount/float(numTestVecs)))
    print(errorCount)

2.3 手写识别系统实例

2.3.1 实例数据

为了简单起见,这里构造的系统只能识别数字09。需要识别的数字已经使用图形处理软件,处理成具有相同的色彩和大小 :宽髙是32像素x 32像素的黑白图像。尽管采用文本格式存储图像不能有效地利用内存空间,但是为了方便理解,我们还是将图像转换为文本格式。

trainingDigits是2000个训练样本,testDigits是900个测试样本。

2.3.2 算法的流程

 2.3.3 Python实现代码

将下面的代码增加到 kNN.py 中,img2vector 为图片转换成向量的方法,handwritingClassTest 为测试方法:

from os import listdir
def img2vector(filename):
    """
    将图片数据转换为01矩阵。
    每张图片是32*32像素,也就是一共1024个字节。
    因此转换的时候,每行表示一个样本,每个样本含1024个字节。
    """
    # 每个样本数据是1024=32*32个字节
    returnVect = zeros((1,1024))
    fr = open(filename)
    # 循环读取32行,32列。
    for i in range(32):
        lineStr = fr.readline()
        for j in range(32):
            returnVect[0,32*i+j] = int(lineStr[j])
    return returnVect

def handwritingClassTest():
    hwLabels = []
    # 加载训练数据
    trainingFileList = listdir('trainingDigits')           
    m = len(trainingFileList)
    trainingMat = zeros((m,1024))
    for i in range(m):
        # 从文件名中解析出当前图像的标签,也就是数字是几
        # 文件名格式为 0_3.txt 表示图片数字是 0
        fileNameStr = trainingFileList[i]
        fileStr = fileNameStr.split('.')[0]     #take off .txt
        classNumStr = int(fileStr.split('_')[0])
        hwLabels.append(classNumStr)
        trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr)
    # 加载测试数据
    testFileList = listdir('testDigits')        #iterate through the test set
    errorCount = 0.0
    mTest = len(testFileList)
    for i in range(mTest):
        fileNameStr = testFileList[i]
        fileStr = fileNameStr.split('.')[0]     #take off .txt
        classNumStr = int(fileStr.split('_')[0])
        vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)
        classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
        print("the classifier came back with: %d, the real answer is: %d, The predict result is: %s" % (classifierResult, classNumStr, classifierResult==classNumStr))
        if (classifierResult != classNumStr): errorCount += 1.0
    print("\nthe total number of errors is: %d / %d" %(errorCount, mTest))
    print("\nthe total error rate is: %f" % (errorCount/float(mTest)))

k-近邻算法识别手写数字数据集,错误率为1.2%。改变变量k的值、修改函数 handwritingClassTest 随机选取训练样本、改变训练样本的数目,都会对k-近邻算法的错误率产生影响,感兴趣的话可以改变这些变量值,观察错误率的变化。

k-近邻算法是分类数据最简单最有效的算法。它必须保存全部数据集,如果训练数据集很大,必须使用大量的存储空间。此外,由于必须对数据集中的每个数据计算距离值,实际使用时可能非常耗时。其另一个缺陷是它无法给出任何数据的基础结构信息,因此我们也无法知晓平均实例样本和典型实例样本具有什么特征。

 

3 应用 scikit-learn 库实现k近邻算法

"""
scikit-learn 库对knn的支持
数据集是iris虹膜数据集
"""

from sklearn.datasets import load_iris  
from sklearn import neighbors  
import sklearn  
  
#查看iris数据集  
iris = load_iris()  
print(iris)

'''
KNeighborsClassifier(n_neighbors=5, weights='uniform', 
                     algorithm='auto', leaf_size=30, 
                     p=2, metric='minkowski', 
                     metric_params=None, n_jobs=1, **kwargs)
n_neighbors: 默认值为5,表示查询k个最近邻的数目
algorithm:   {‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’},指定用于计算最近邻的算法,auto表示试图采用最适合的算法计算最近邻
leaf_size:   传递给‘ball_tree’或‘kd_tree’的叶子大小
metric:      用于树的距离度量。默认'minkowski与P = 2(即欧氏度量)
n_jobs:      并行工作的数量,如果设为-1,则作业的数量被设置为CPU内核的数量
查看官方api:http://scikit-learn.org/dev/modules/generated/sklearn.neighbors.KNeighborsClassifier.html#sklearn.neighbors.KNeighborsClassifier
'''
knn = neighbors.KNeighborsClassifier()  
#训练数据集  
knn.fit(iris.data, iris.target)
#训练准确率
score = knn.score(iris.data, iris.target)

#预测
predict = knn.predict([[0.1,0.2,0.3,0.4]])
#预测,返回概率数组
predict2 = knn.predict_proba([[0.1,0.2,0.3,0.4]])

print(predict)
print(iris.target_names[predict])



  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值