LC.169.多数元素

前言

 一题三解,又学到了新知识,重点关注第三种----摩尔投票法。

题目描述

给定一个大小为 n 的数组,找到其中的多数元素。多数元素是指在数组中出现次数 大于 ⌊ n/2 ⌋ 的元素。

你可以假设数组是非空的,并且给定的数组总是存在多数元素。

示例1:

输入:[3,2,3]
输出:3

示例2:

输入:[2,2,1,1,1,2,2]
输出:2

解法

 解法一:如果将数组 nums 中的所有元素按照单调递增或单调递减的顺序排序,那么下标为 n/2 的元素(下标从 0 开始)一定是众数。

class Solution {
    public int majorityElement(int[] nums) {
        Arrays.sort(nums);
        return nums[nums.length / 2];
    }
}

 解法二:遍历整个数组,记录每个数值出现的次数(利用HashMap,其中key为数值,value为出现次数);接着遍历HashMap中的每个Entry,寻找value值 > nums.length / 2 的key即可。

class Solution {
    public int majorityElement(int[] nums) {
        int res = 0;
        Map<Integer,Integer> map = new HashMap<>();
        for(int i = 0;i < nums.length;i++){
            map.put(nums[i],map.getOrDefault(nums[i],0) + 1);
        }
        for(Map.Entry<Integer,Integer> entry : map.entrySet()){
            if(map.get(entry.getKey()) > nums.length / 2){
                res = entry.getKey();
            }
        }
        return res;
    }
}

 解法三:摩尔投票法
  算法步骤:

  • 我们维护一个候选众数 candidate 和它出现的次数 count。初始时 candidate 可以为任意值,count 为 0;

  • 我们遍历数组 nums 中的所有元素,对于每个元素 x,在判断 x 之前,如果 count 的值为 0,我们先将 x 的值赋予 candidate,随后我们判断 x:

    如果 x 与 candidate 相等,那么计数器 count 的值增加 1;

    如果 x 与 candidate 不等,那么计数器 count 的值减少 1。

  • 在遍历完成后,candidate 即为整个数组的众数。

  可以看出摩尔投票法的核心就是 对拼消耗,因为众数的个数大于 n/2 ,所以通过两两对拼后,最后一定会有一个幸存者!

class Solution {
    public int majorityElement(int[] nums) {
       int candinate = 0;
       int counter = 0;
       for(int i = 0;i < nums.length;i++){
           if(counter == 0){
               candinate = nums[i];
               counter++;
           }else if(nums[i] == candinate){
               counter++;
           }else{
               counter--;
           }
       }
       return candinate;
    }
}
总结

 该题目标数的个数大于 n/2 ,是本题解题的核心。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值