- 博客(5)
- 收藏
- 关注
原创 自编码器通俗易懂的解释(Why-What-When-How)
文章简单介绍了自编码器出现的原因(Why)、结构和原理(What)、应用场景(When)和构建步骤(How)。
2024-05-13 21:14:03 882
原创 预训练模型-VGG16模型的构建,批量图片预测、类激活图以及ROC曲线结果
正如之前的文章《卷积神经网络构建,新图片的预测与类激活图——提高CNN模型的可解释性》所说,当图片数据量十分有限时,分类模型CNN的分类性能受到了严重的限制。因此本文中引入了常用的一种方法——使用预训练模型。预训练模型简单来说就是已经在大型数据集上训练好的模型。可能会有人提出疑问,已经训练好的模型可以应用到新的图片分类问题中吗?这就得说说使用预训练模型的基本原理,人们默认当原始图片数据集足够大且通用时,预训练模型从中学到的特征的空间层次结构可以有效地作为视觉世界的通用模版。
2023-04-10 20:32:42 3360 4
原创 卷积神经网络构建,新图片预测与类激活图——提高CNN模型的可解释性
卷积神经网络(CNN)作为最基础的图像分类与识别的深度学习模型,在很多领域都有着应用,例如人脸识别,医学图像分类等。本文从CNN出发,介绍基本CNN模型的构建,逐渐深入到复杂CNN变体VGG16的搭建。同时为了提高CNN这类模型的可解释性,使用已保存的CNN和VGG16模型预测批量的新图片,借助类激活图(CAM, class activation map) 对分类结果进行解释。最后绘制受试者工作特性曲线(ROC),对整体预测结果进行分析。
2023-03-25 22:55:09 1631
原创 LSTM中的归一化与反归一化问题、预测未来值问题
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、LSTM为什么要进行归一化,以及如何反归一化?二、单特征时序预测中的反归一化1.单特征时序数据预测导入相关包2.读入数据3.对数据进行归一化利用3sigma原则查找异常点并删除自定义划分数据集,并构造批数据的函数构建LSTM模型,并编译运行验证模型并对预测值进行反归一化,并查看预测情况根据输入预测未来一段时间内的值总结前言提示:这里可以添加本文要记录的大概内容:长短时记忆(LSTM)模型作为RNN的一种,经常被应用.
2022-05-05 21:56:15 16658 39
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人