- 博客(4)
- 收藏
- 关注
原创 《动手学深度学习》-小白笔记四
小白知识 二维互相关运算 输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小于输入数组,卷积核在输入数组上滑动,在每个位置上,卷积核与该位置处的输入子数组按元素相乘并求和,得到输出数组中相应位置的元素。 ...
2020-02-19 21:31:46 473
原创 《动手学深度学习》-小白笔记三
小白知识点 训练误差和泛化误差 训练误差:模型在训练数据集上表现出的误差 泛化误差:模型在任意一个测试数据样本上表现出的误差的期望,并常常通过测试数据集上的误差来近似。 验证数据集、测试数据集和训练数据集三者的功能 三者的功能: 训练集:模型训练的过程其实就是在求参数,我们通过训练集来分别对模型进行训练,学习到每一个模型中对应的最优的参数。 验证集:我们要考察不同结构的模型在数据上的优劣程度,而模...
2020-02-19 19:20:28 235
原创 《动手学深度学习》-小白笔记一
线性回归 损失函数中的解分为两类: 解析解:误差最小化问题的解可以直接用公式表达出来 数值解:通过优化算法有限次迭代模型参数来尽可能降低损失函数的值 优化函数的两个步骤: 初始化模型参数,一般来说使用随机初始化。 我们在数据上迭代多次,通过在负梯度方向移动参数来更新每个参数。 ...
2020-02-14 17:57:57 318
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人