Definition of Machine Learning
T-TASK
P-PARAMETER
E-EXPERIENCE
Supervised Learning
- 回归问题(连续值)
- 分类问题(离散值)
Unsupervised Learning
-
clustering(聚类)
-
cocktail party problem
Linear Regression
即线性回归要寻找代价函数的最低点,使假设函数hypothesis 与 真实值y 的误差最小
如何自动寻找最低点?—— 梯度下降
Gradient descent
Q:所以是否存在过大的情况会使梯度无法收敛,甚至发散 ?
A:求导随着梯度下降会变小,控制下降速度
A:如果在局部最优点(导数值为0)的点,J就呆在原地不动