# Problem C. GSS and Bubble Sort

Problem C. GSS and Bubble Sort
Input file: standard input
Output file: standard output
Time limit: 1 seconds
Memory limit: 512 mebibytes
Do you remember the problem “Time Limit Exceeded” last year? Here is the code GSS wrote in that problem.
include < stdio.h>
int main() {
int n;
int *vec;
scanf(”%d”, &n);
vec = malloc(sizeof(int) * n);
for (int i = 0; i < n; i++) {
int t;
scanf(”%d”, &t);
vec[i] = t;
}
for (int i = 0; i < n; i++)
for (int j = 0; j < n - 1; j++)
if (vec[j] > vec[j+1])
swap(vec[j], vec[j+1]);
/* some other code takes O(1) time */
return 0;
}
As you are GSS’s team mate, your task is to calculate the expected time the code will run with an input of size n,
(0 < n < 109
). The time is measured by how many times the function swap is called. You should note that the
input is a permutation of {1, 2, … , n} in the original problem.
Input
Input contains multiple (about 1000) test cases, please process to the end of input.
Each test cases contains an integer n as described above.
Output
For each test case, output one line with the answer.
If your answer is p/q, then you should output p × q
109+5 module 1000000007 (109 + 7).
Examples
standard input standard output
1
2
0
500000004
Note
In the second sample, there are two possible input {1, 2} and {2, 1}, so the expected time the function swap is
called is (0 + 1)/2 = 1/2, and 1 × 2
1e9+5 module 1e9 + 7 is 500000004.

//标程
#include <bits/stdc++.h>
using namespace std;

const int mod = 1000000007;
long long pow_mod(long long a, long long b)
{
long long ret = 1;
while (b)
{
if (b & 1) {
ret = ret * a % mod;
}
a = a * a % mod;
b >>= 1;
}
return ret;
}

int main()
{
long long n;
while (cin >> n)
{
long long ret = n * (n - 1) % mod;
ret = ret * pow_mod(4, mod - 2) % mod;
cout << ret << "\n";
}
return 0;
}