http://hi.baidu.com/billdu/item/703ad4e15d819db52f140b0b 根据这个思路写的。
将圆与三角形的交按照0、1、2个交点分类
然后就好做多啦,有效面积是个强大的工具
买一送2,poj 3675,2986一样可以用模板过掉。
咔咔。有自己的模板真好~~
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <limits.h>
#include <string.h>
#include <string>
#include <algorithm>
#define MID(x,y) ( ( x + y ) >> 1 )
#define L(x) ( x << 1 )
#define R(x) ( x << 1 | 1 )
#define FOR(i,s,t) for(int i=(s); i<(t); i++)
#define FORD(i,s,t) for(int i=(s-1); i>=t; i--)
#define BUG puts("here!!!")
#define STOP system("pause")
#define file_r(x) freopen(x, "r", stdin)
#define file_w(x) freopen(x, "w", stdout)
using namespace std;
const int MAX = 110;
const double pi = acos(-1.0);
struct point {
double x, y;
};
point p[MAX];
point c;
double r;
const double eps = 1e-8;
int dcmp(double x) {
return x < -eps ? -1 : x > eps ? 1 : 0;
}
double disp2p(point a,point b) // a b 两点之间的距离
{
return sqrt( ( a.x - b.x ) * ( a.x - b.x ) + ( a.y - b.y ) * ( a.y - b.y ) );
}
double crossProduct(point a,point b,point c)//向量 ac 在 ab 的方向 顺时针是正
{
return (c.x - a.x)*(b.y - a.y) - (b.x - a.x)*(c.y - a.y);
}
point l2l_inst_p(point u1,point u2,point v1,point v2)
{
point ans = u1;
double t = ((u1.x - v1.x)*(v1.y - v2.y) - (u1.y - v1.y)*(v1.x - v2.x))/
((u1.x - u2.x)*(v1.y - v2.y) - (u1.y - u2.y)*(v1.x - v2.x));
ans.x += (u2.x - u1.x)*t;
ans.y += (u2.y - u1.y)*t;
return ans;
}
//直线与圆的交点
int l2c_inst_p(point c,double r,point l1,point l2,point *pv)
{
int cnt = 0;
double d = fabs( crossProduct(c,l1,l2) )/disp2p(l1,l2);
if( dcmp(d-r) > 0 )
return 0;
point p = c;
double t;
p.x += l1.y - l2.y;
p.y += l2.x - l1.x;
p = l2l_inst_p(p,c,l1,l2);
t = sqrt(r*r - disp2p(p,c)*disp2p(p,c))/disp2p(l1,l2);
pv[cnt].x = p.x + (l2.x - l1.x)*t;
pv[cnt++].y = p.y + (l2.y - l1.y)*t;
if( dcmp(d-r) == 0 )
return cnt;
pv[cnt].x = p.x - (l2.x - l1.x)*t;
pv[cnt++].y = p.y - (l2.y - l1.y)*t;
return cnt;
}
//若不包括端点,将等于号去掉
bool onSegment(point a, point b, point c)
{
//和端点重合
if( dcmp(c.x - a.x) == 0 && dcmp(c.y - a.y) == 0 || dcmp(c.x - b.x) == 0 && dcmp(c.y - b.y) == 0 )
return false;
if( dcmp(crossProduct(a,b,c)) == 0 && dcmp(c.x - min(a.x,b.x)) >= 0 &&
dcmp(c.x-max(a.x,b.x)) <= 0 && dcmp(c.y - min(a.y,b.y)) >= 0 && dcmp(c.y-max(a.y,b.y)) <= 0 )
return true;
return false;
}
//求线段与圆的交点,p中存放交点,返回交点个数
//若不包括端点,需要在onSegment函数中控制一下
int seg2c_inst_p(point c,double r,point l1,point l2,point *p)
{
point pv[3];
int cnt = l2c_inst_p(c, r, l1, l2, pv);
int cntp = 0;
FOR(i, 0, cnt)
if( onSegment(l1, l2, pv[i]) )
p[cntp++] = pv[i];
//按照交点离l1的顺序从小到大排序
if( cntp == 2 ) {
if(disp2p(p[0], l1) > disp2p(p[1], l1) )
swap(p[0], p[1]);
}
return cntp;
}
double area_triangle(point a,point b,point c)
{
return fabs( crossProduct(a,b,c) )/2.0;
}
//求以acb为圆心角的扇形(小于180度)
double area_shan(point a, point b, point c, double r) {
double aa = disp2p(c, b);
double bb = disp2p(a, c);
double cc = disp2p(a, b);
double ang = acos((aa*aa + bb*bb - cc*cc)/(2*aa*bb));
return ang/2*r*r;
}
//三角形与圆的交面积,其中c是圆心
double area_triangle2circle(point a, point b, point c, double r) {
point p[3];
int cnt = seg2c_inst_p(c, r, a, b, p);
if( dcmp(crossProduct(a, b, c)) == 0 )
return 0;
if( cnt == 0 ) {
if( dcmp(disp2p(a, c) - r) <= 0 && dcmp(disp2p(b, c) - r) <= 0 )
return area_triangle(a, b, c);
else
return area_shan(a, b, c, r);
}
if( cnt == 1 ) {
if( dcmp(disp2p(a, c) - r) > 0 && dcmp(disp2p(b, c) - r) > 0 )
return area_shan(a, b, c, r);
if( dcmp(disp2p(a, c) - r) > 0 )
swap(a, b);
return area_shan(p[0], b, c, r) + area_triangle(a, p[0], c);
}
if( cnt == 2 ) {
return area_shan(a, p[0], c, r) + area_shan(p[1], b, c, r)
+ area_triangle(p[0], p[1], c);
}
}
double solve(int n) {
double area = 0;
FOR(i, 0, n) {
area += area_triangle2circle(p[i], p[(i+1)%n], c, r) *
dcmp(crossProduct(c, p[(i+1)%n], p[i]));
}
return fabs(area);
}
void cal(double x0,double y0,double v0,double a,double t,double g)
{
double yt = v0*sin(a);
double xt = v0*cos(a);
double xx = x0 + xt*t;
double yy = y0 + yt*t-0.5*g*t*t;
c.x = xx;
c.y = yy;
}
int main() {
int n;
double x, y, v, ang, t, g;
while( ~scanf("%lf%lf%lf%lf%lf%lf%lf", &x, &y, &v, &ang, &t, &g, &r) ) {
if( x == y && y == v && v == ang && ang == t && t == g && g == r && r == 0 )
break;
scanf("%d", &n);
FOR(i, 0, n)
scanf("%lf%lf", &p[i].x, &p[i].y);
cal(x, y, v, ang/180*pi, t, g);
double ans = solve(n);
printf("%.2lf\n", ans);
}
return 0;
}