2019.2.2

1.du dong yige yufa 2.zong jie resnet 3.jiang res zai pao 20 wanci

2019-02-02 09:38:06

阅读数 26

评论数 0

反卷积可视化工具--deconv-deep-vis-toolbox

https://www.cnblogs.com/byteHuang/p/6932772.html

2019-01-22 16:56:01

阅读数 30

评论数 1

caffe---之deconv

template<typename Dtype> class caffe::BilinearFiller< Dtype > Fills a Blob with coefficients for bilinea...

2019-01-22 16:53:59

阅读数 23

评论数 0

cafffe---之params参数

#solver.net.params为一个字典的数据类型,key值为layer 的名字,value为caffe的blob块的容器哦; solver.net.forward() #输出为: solver.net.params orderedDict([ ('conv1', <...

2019-01-14 16:18:53

阅读数 34

评论数 0

Densely Connected Convolutional Networks

                                                                   Densely Connected Convolutional Networks 摘要: 最近的工作显示了,神经网络通过最近的层作为输入连接到后层,然后通过更深...

2019-01-14 10:15:51

阅读数 51

评论数 0

神经网络中的不变性

个人认为cnn中conv层对应的是“等变性”(Equivariance),由于conv层的卷积核对于特定的特征才会有较大激活值,所以不论 上一层特征图谱(feature map)中的某一特征平移到何处,卷积核都会找到该特征并在此处呈现较大的激活值。这应该就是“等变性” 这种“等变性”是由co...

2019-01-09 20:56:48

阅读数 35

评论数 0

Visualizing and Understanding Convolutional Networks

《Visualizing and Understanding Convolutional Networks》 Matthew D Zeiler, Rob Fergus (ECCV2014) 论 文 :http://t.cn/RyYKQ8z 视频: http://t.cn/RyYKQ87 翻 ...

2019-01-03 21:17:24

阅读数 25

评论数 0

python---之super()继承,解决钻石继承难题

1.   Python的继承以及调用父类成员 python子类调用父类成员有2种方法,分别是普通方法和super方法 假设Base是基类 class Base(object): def __init__(self): print “Base init” ...

2019-01-02 20:43:01

阅读数 42

评论数 0

caffe---之reshape层

layer { name: "reshape" type: "Reshape" bottom: "input" ...

2018-12-28 09:53:27

阅读数 16

评论数 0

caffe---之eltwise层

Eltwise : element-wise eltwise layer是caffe提供的按元素操作层。它支持3种基本操作: 1. PROD:按元素乘积 2. SUM:按元素求和(默认) 3. MAX:保存元素大者 进行何种操作可以在layer里面通过定义EltwiseOp : x #x:=0...

2018-12-27 16:07:40

阅读数 18

评论数 0

caffe---之scale层

caffe源码中给出了scale层的作用,如下: layer { name: "inception_3a_scale" type: "Scale" bottom: "inception_3a/...

2018-12-26 17:33:40

阅读数 63

评论数 0

深度学习之---yolo源代码部分分析

yolo代码是用c写的,我们先从主函数开始: main: int main(int argc, char **argv) { //test_resize("data/bad.jpg"); //test_box(); //test_c...

2018-12-19 21:32:28

阅读数 45

评论数 0

python---subplot函数

1 问题描述 matploglib 能够绘制出精美的图表, 有些时候, 我们希望把一组图放在一起进行比较, 有没有什么好的方法呢? matplotlib 中提供的 subplot 可以很好的解决这个问题 2 subplot函数介绍 matplotlib下, 一个 Figure 对象可以包含...

2018-12-19 14:06:03

阅读数 33

评论数 0

python---之suplot里面的twinx()函数

twinx()函数表示共享x轴 twiny()表示共享y轴 共享表示的就是x轴使用同一刻度线

2018-12-19 14:03:24

阅读数 67

评论数 0

python---之suplot和suplots的区别

前言: 大家一般都知道subplot可以画子图,但是subplots也可以画子图,鉴于subplots介绍比较少,这里做一个对比,两者没有功能一致。 参考博客:Matplotlib的子图subplot的使用 参考博客:subplots与figure函数参数解释说明以及简单的使用脚本实例 对...

2018-12-19 14:01:14

阅读数 39

评论数 0

python---之plot函数的颜色参数等

1、plt.plot(x,y,format_string,**kwargs) 转自点击打开链接 x轴数据,y轴数据,format_string控制曲线的格式字串  format_string 由颜色字符,风格字符,和标记字符      关于*kwargs,有时候,函数的参数里会有(...

2018-12-19 13:57:28

阅读数 81

评论数 0

2018.12.18

1.完成ppt 2.训好单source图像 3.可视化loss 4.总结Yolo

2018-12-18 09:38:51

阅读数 23

评论数 0

深度学习之----双线性插值,转置卷积,反卷积的区别与联系

一.线性插值 这里讲解线性插值法的推导为了给双线性插值公式做铺垫。    线性插值法是指使用连接两个已知量的直线来确定在这个两个已知量之间的一个未知量的值的方法。 二.双线性插值 双线性插值是插值算法中的一种,是线性插值的扩展。利用原图像中目标点四周的四个真实存在的像素值来共同决...

2018-12-17 14:45:43

阅读数 143

评论数 0

深度学习---之segnet

原文地址:SegNet 复现详解:http://mi.eng.cam.ac.uk/projects/segnet/tutorial.html 实现代码:    github                        TensorFlow 简介:         SegNet是Cambr...

2018-12-17 11:18:06

阅读数 36

评论数 0

图像处理----什么是图像分辨率及细节为何为高频信息

图像分辨率泛指成像或显示系统对细节的分辨能力,代表图像中存储的信息量。一般情况下,图像分辨率越高,图像中包含的细节越多,信息量也越大。图像分辨率分为空间分辨率和时间分辨率。通常,分辨率被表示成每一个方向上的像素数量,例如64*64的二维图像。但是,分辨率的高低并不等同于像素数量的多少,例如一个通过...

2018-12-17 11:02:44

阅读数 65

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭