转载:百度百科
-
基向量
编辑
-
中文名
- 基向量 外文名
- base vector 定 义
- 基的元素称为基向量
-
相关术语
- 单位向量 领 域
- 数学 应用学科
- 线性代数
简述
编辑
在
线性代数中,
基(basis)(也称为
基底)是描述、刻画向量空间的基本工具。向量空间的基是它的一个特殊的子集,基的元素称为
基向量。向量空间中任意一个元素,都可以唯一地表示成基向量的线性组合。如果基中元素个数有限,就称向量空间为有限维向量空间,将元素的个数称作向量空间的
维数。
[1]
使用基底可以便利地描述向量空间。比如说,考察从一个向量空间
射出的线性变换f,可以查看这个变换作用在向量空间的一组基
上的效果。掌握了
,就等于掌握了 f对
中任意元素的效果。




不是所有空间都拥有由有限个元素构成的基底。这样的空间称为无限维空间。某些无限维空间上可以定义由无限个元素构成的基。如果承认选择公理,那么可以证明任何向量空间都拥有一组基。一个向量空间的基不止一组,但同一个空间的两组不同的基,它们的元素个数或势(当元素个数是无限的时候)是相等的。
一组基里面的任意一部分向量都是线性无关的;反之,如果向量空间拥有一组基,那么在向量空间中取一组线性无关的向量,一定能将它扩充为一组基。在内积向量空间中,可以定义正交的概念。通过特别的方法,可以将任意的一组基变换成正交基乃至标准正交基。