R语言学习笔记:缺失值的判断与处理

本文介绍了R语言中处理缺失值的方法,包括使用is.na()和complete.cases()进行判断,利用md.pattern()和aggr()分析缺失模式,以及通过na.omit()删除缺失值,和mice()包进行多重插补。通过这些工具,可以有效地管理和处理数据集中的缺失数据。
摘要由CSDN通过智能技术生成

1.判断缺失值

函数:is.na(),返回值为逻辑值,TRUE代表缺失,否则为FALSE。

函数:complete.cases(),返回值为逻辑值,与is.na()相反,FASLE代表缺失,否则为TRUE。

2.判断缺失模式

函数:md.pattern():属于mice包,返回值为数据表,结果中“1”代表没有缺失值,“0”代表存在缺失值。第一列的值代表符合其后的每一行缺失情况的样本数,例如:

  x1 x2 x3
4 1 1 0

表示有4个样本缺少了x3变量的值。

最后一列表示缺失的变量数;最后一行表示含每个变量缺失值的观测值数目之和。

函数:aggr():属于VIM包,可以根据返回的图像判断缺失情况。函数结构:

aggr(x,delimter = NULL,plot = TRUE,...)
x代表要判断的向量、矩阵或数据框;delimiter用于区分插补变量,在判断缺失模式中,参数默认忽略;plot为逻辑值,判断是否绘制图形。
3.缺失数据的处理

(1)删除缺失样本

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值