【LOJ547】「LibreOJ β Round #7」匹配字符串(常系数齐次线性递推)(Lucas定理)

传送门


题解:

首先我们知道这玩意可以直接DP。

f i f_i fi表示长度为 i i i的串,以 0 0 0结尾的合法方案数,则有转移 f n = ∑ i = n − m n − 1 f i f_n=\sum_{i=n-m}^{n-1}f_i fn=i=nmn1fi 很显然可以直接用线性递推搞,多项式取模的时候由于前面的系数全部都是 1 1 1,可以记录一下前面的和优化到 O ( m ) O(m) O(m)

上面的做法只能在 m m m较小的时候搞,在 m m m较大的时候需要另辟蹊径。

s n = ∑ i = 1 n f i s_n=\sum_{i=1}^nf_i sn=i=1nfi,用两个 s s s相减即可得到我们要的 f f f,根据 f f f的递推式,我们知道 s n − s n − 1 = s n − 1 − s n − m − 1 s_n-s_{n-1}=s_{n-1}-s_{n-m-1} snsn1=sn1snm1

也就是 s n = 2 ⋅ s n − 1 − s n − m − 1 s_n=2\cdot s_{n-1}-s_{n-m-1} sn=2sn1snm1

注意我们并不想线性递推,现在在考虑 m m m较大的情况。

考虑图论意义, i i i i + 1 i+1 i+1连了权值为 2 2 2的边,向 i + m + 1 i+m+1 i+m+1连了权值为 − 1 -1 1的边,求 0 0 0 n n n的所有路径权值和。

枚举经过了多少条权值为 1 1 1的边,我们可以得到 s n = ∑ i = 0 ⌊ n m + 1 ⌋ ( − 1 ) i 2 n − ( m + 1 ) i ( n − i ⋅ m i ) s_n=\sum_{i=0}^{\lfloor\frac{n}{m+1}\rfloor}(-1)^i2^{n-(m+1)i}{n-i\cdot m\choose i} sn=i=0m+1n(1)i2n(m+1)i(inim)

直接Lucas算一下就行了。


代码:

#include<bits/stdc++.h>
#define ll long long
#define re register
#define cs const

using std::cerr;
using std::cout;

cs int mod=65537;
inline int add(int a,int b){a+=b-mod;return a+(a>>31&mod);}
inline int dec(int a,int b){a-=b;return a+(a>>31&mod);}
inline int mul(int a,int b){ll r=(ll)a*b;return r>=mod?r%mod:r;}
inline int power(int a,int b,int res=1){
	for(;b;b>>=1,a=mul(a,a))(b&1)&&(res=mul(res,a));
	return res;
}
inline void Inc(int &a,int b){a+=b-mod;a+=a>>31&mod;} 
inline void Dec(int &a,int b){a-=b;a+=a>>31&mod;}
inline void Mul(int &a,int b){a=mul(a,b);}

ll n,m;

namespace Solve1{

cs int bit=16,SIZE=1<<bit|1;

int r[SIZE],*w[bit+1];
inline void init_NTT(){
	for(int re i=1;i<=bit;++i)w[i]=new int[1<<i-1];
	int wn=power(3,mod-1>>bit);w[bit][0]=1;
	for(int re i=1;i<(1<<bit-1);++i)w[bit][i]=mul(w[bit][i-1],wn);
	for(int re i=bit-1;i;--i)
	for(int re j=0;j<(1<<i-1);++j)w[i][j]=w[i+1][j<<1];
}
inline void NTT(int *A,int len,int typ){
	for(int re i=1;i<len;++i)if(i<r[i])std::swap(A[i],A[r[i]]);
	for(int re i=1,d=1;i<len;i<<=1,++d)
	for(int re j=0;j<len;j+=i<<1)
	for(int re k=0;k<i;++k){
		int &t1=A[j+k],&t2=A[j+k+i],t=mul(t2,w[d][k]);
		t2=dec(t1,t),Inc(t1,t);
	}
	if(typ==-1){
		std::reverse(A+1,A+len);
		for(int re i=0,inv=power(len,mod-2);i<len;++i)Mul(A[i],inv);
	}
}
inline void init_rev(int l){
	for(int re i=1;i<l;++i)r[i]=r[i>>1]>>1|((i&1)?l>>1:0);
}
int l;
inline void mul(int *a,int *b,bool mul_self){
	static int A[SIZE],B[SIZE];
	memcpy(A,a,sizeof(int)*(m+1));
	memset(A+m+1,0,sizeof(int)*(l-m-1));
	if(!mul_self){
		memcpy(B,b,sizeof(int)*(m+1));
		memset(B+m+1,0,sizeof(int)*(l-m-1));
	}
	NTT(A,l,1);
	if(!mul_self){
		NTT(B,l,1);
		for(int re i=0;i<l;++i)Mul(A[i],B[i]);
	}else for(int re i=0;i<l;++i)Mul(A[i],A[i]);
	NTT(A,l,-1);
	int sum=0;
	for(int re i=(m<<1)-1;i>=m;--i)Inc(A[i],sum),Inc(sum,A[i]);
	for(int re i=m-1;~i;--i)b[i]=add(A[i],sum),Dec(sum,A[i+m]);
}

int A[SIZE],B[SIZE],F[SIZE];
inline void main(){
	init_NTT();l=1;while(l<=m+m)l<<=1;init_rev(l);
	A[1]=B[0]=F[0]=1;
	for(int re i=1;i<=m;++i)F[i]=add(F[i-1],F[i-1]);
	for(;n;(n>>=1)&&(mul(A,A,true),0))
	(n&1)&&(mul(A,B,false),0);
	int ans=0;
	for(int re i=0;i<m;++i)Inc(ans,::mul(B[i],F[i]));
	cout<<ans<<"\n";
}

}

namespace Solve2{

int fac[mod],ifac[mod];

inline int C(int n,int m){return mul(fac[n],mul(ifac[m],ifac[n-m]));}
inline int Lucas(ll n,int m){
	int res=1;
	do{
		int nn=n%mod,mm=m%mod;
		if(nn<mm)return 0;
		Mul(res,C(nn,mm));
		n/=mod,m/=mod;
	}while(n&&m);
	return res;
}

inline int calc(ll n){
	int res=0,p1=1;
	int b2=power(mod+1>>1,(m+1)%(mod-1)),p2=power(2,n%(mod-1));
	for(int re i=0,li=n/(m+1);i<=li;++i){
		Inc(res,mul(mul(p1,p2),Lucas(n-i*m,i)));
		Mul(p2,b2),p1=mod-p1;
	}
	return res;
}

inline void main(){
	fac[0]=fac[1]=ifac[0]=1;
	for(int re i=2;i<mod;++i)fac[i]=mul(fac[i-1],i);
	ifac[mod-1]=power(fac[mod-1],mod-2);
	for(int re i=mod-2;i;--i)ifac[i]=mul(ifac[i+1],i+1);
	cout<<(calc(n+1)-calc(n)+mod)%mod<<"\n";
}

}

signed main(){
#ifdef zxyoi
	freopen("str.in","r",stdin);
#endif 
	scanf("%lld%lld",&n,&m);
	if(m==1)puts("1");
	else if(m<(1<<15))Solve1::main();
	else Solve2::main();
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值