给一棵n 个节点的树,节点分别编号为0 到n - 1。
你可以通过如下的操作来修改这棵树:首先先删去树上的一条边,此时树会分裂为两个连通块,然后在两个连通块之间加上一条新的边使得它们变成一棵新的树。
问有多少棵n 个节点的树可以通过对原树进行不超过k 次这样的操作来得到,答案对10^9 + 7 取模。如果有一条边(u; v) 出现在了树A 中且不在树B中,我们就认为树A 和树B 是不同的。
对于100% 的数据,n<=80,k < n。
题解:
如果将原树边边权设置为 1 1 1,将非树边边权设置为 x x x,那么做矩阵树得到的多项式就是选择 k k k条非树边的方案的生成函数。
直接用多项式来做是 O ( n 5 ) O(n^5) O(n5)。
注意到最后一定是一个不超过 n − 1 n-1 n−1次的多项式。
代入 n n n个点进去算,之后高斯消元解一下原多项式系数即可。
复杂度 O ( n 4 ) O(n^4) O(n4)
代码:
#include<bits/stdc++.h>
#define ll long long
#define re register
#define cs const
using std::cerr;
using std::cout;
cs int mod=1e9+7;
inline int add(int a,int b){a+=b-mod;return a+(a>>31&mod);}
inline int dec(int a,int b){a-=b;return a+(a>>31&mod);}
inline int mul(int a,int b){ll r=(ll)a*b;return r>=mod?r%mod:r;}
inline int power(int a,int b,int res=1){
for(;b;b>>=1,a=mul(a,a))(b&1)&&(res=mul(res,a));
return res;
}
inline void Inc(int &a,int b){a+=b-mod;a+=a>>31&mod;}
inline void Dec(int &a,int b){a-=b;a+=a>>31&mod;}
inline void Mul(int &a,int b){a=mul(a,b);}
cs int N=87;
int n,k;
bool con[N][N];
int a[N][N],c[N][N];
inline int matrix_tree(int v){
for(int re i=1;i<=n;++i)a[i][i]=0;
for(int re i=1;i<=n;++i)
for(int re j=i+1;j<=n;++j){
if(con[i][j])a[i][j]=a[j][i]=mod-1,a[i][i]++,a[j][j]++;
else a[i][j]=a[j][i]=mod-v,a[i][i]+=v,a[j][j]+=v;
}
int ans=1;
for(int re i=1;i<n;++i){
int p;for(p=i;p<n;++p)if(a[p][i])break;
if(p>=n)return 0;
if(p!=i){
ans=mod-ans;
for(int re j=i;j<n;++j)std::swap(a[p][j],a[i][j]);
}
Mul(ans,a[i][i]);
p=power(a[i][i],mod-2);
for(int re j=i;j<n;++j)Mul(a[i][j],p);
for(int re j=i+1;j<n;++j)if(int t=a[j][i])
for(int re k=i;k<n;++k)Dec(a[j][k],mul(t,a[i][k]));
}
return ans;
}
inline void gauss(){
for(int re i=1;i<=n;++i){
int p;for(p=i;p<=n;++p)if(c[p][i])break;
if(p!=i)for(int re j=i;j<=n+1;++j)std::swap(c[p][j],c[i][j]);
p=power(c[i][i],mod-2);
for(int re j=i;j<=n+1;++j)Mul(c[i][j],p);
for(int re j=i+1;j<=n;++j)if(int t=c[j][i])
for(int re k=i;k<=n+1;++k)Dec(c[j][k],mul(t,c[i][k]));
}
for(int re i=n;i;--i){
for(int re j=i-1;j;--j)if(int t=c[j][i])Dec(c[j][n+1],mul(c[i][n+1],t));
}
}
signed main(){
#ifdef zxyoi
freopen("tree.in","r",stdin);
#endif
scanf("%d%d",&n,&k);
for(int re i=2;i<=n;++i){
int v;scanf("%d",&v);
con[i][v+1]=con[v+1][i]=true;
}
for(int re i=1;i<=n;++i){
for(int re j=1,t=1;j<=n;++j,Mul(t,i))c[i][j]=t;
c[i][n+1]=matrix_tree(i);
}
gauss();int ans=0;
for(int re i=1;i<=k+1;++i)Inc(ans,c[i][n+1]);
cout<<ans<<"\n";
return 0;
}