【集训队作业2018】青春猪头少年不会梦到兔女郎学姐(容斥)(分治FFT)

简要题意:

给定 n n n 种颜色的球,第 i i i 种颜色的球数量为 a i a_i ai 个,一种排列的贡献可以如下计算:先把这个序列首尾相连,然后把所有相邻且颜色相同的段拿出来,贡献为他们的长度之积,求所有排列的贡献和,原排列不同,首尾相连后相同的排列不算同一种。模 998244353 998244353 998244353

n ≤ 1 e 5 , ∑ a i ≤ 2 e 5 n\leq 1e5,\sum a_i\leq 2e5 n1e5ai2e5


题解:

首先不管环,我们考虑序列上的处理方式。

如果能够处理序列,直接强制第一个为 1 1 1,结尾任意,减去强制开头为 1 1 1,结尾为 1 1 1的答案即可。

假设第 i i i种球被分成 b i b_i bi个段,所有方案贡献之和为 f ( a i , b i ) f(a_i,b_i) f(ai,bi),可以显然发现实际上就是把 a i a_i ai分成 b i b_i bi段后每段选择一个数的方案数,发现两个隔板之间一定会有一个标记,可以看做在 a i + b i − 1 a_i+b_i-1 ai+bi1个位置中选择 b i ∗ 2 − 1 b_i*2-1 bi21个地方打上标记的方案数,即为 f ( a i , b i ) = ( a i + b i − 1 2 ∗ b i − 1 ) = ( a i + b i − 1 a i − b i ) f(a_i,b_i)={a_i+b_i-1\choose 2*b_i-1}={a_i+b_i-1\choose a_i-b_i} f(ai,bi)=(2bi1ai+bi1)=(aibiai+bi1)

现在需要对于指定了每种球被分为若干段之后交替放球的方案数。

考虑容斥,枚举每种球有 c i c_i ci个断点被强制合并,我们得到方案数为:

∑ c ( ∏ ( b i − 1 c i ) ( − 1 ) c i ) ] ( ∑ b i − c i ) ! ∏ ( b i − c i ) ! \sum_c(\prod {b_i-1\choose c_i}(-1)^{c_i})]\frac{(\sum{b_i-c_i})!}{\prod (b_i-c_i)!} c((cibi1)(1)ci)](bici)!(bici)!

答案其实就是再枚举 b b b序列把 ∏ f ( a i , b i ) \prod f(a_i,b_i) f(ai,bi)乘进去。

这个后面的 b i − c i b_i-c_i bici看着有点复杂,接下来设 c i c_i ci表示实际有至少 c i c_i ci段第 i i i种球。

则答案式子可以写出来:

∑ b ∑ c ( ∏ f ( a i , b i ) ( b i − 1 c i − 1 ) ( − 1 ) b i − c i ) ( ∑ c i ) ! ∏ c i ! \sum_b\sum_c(\prod f(a_i,b_i){b_i-1\choose c_i-1}(-1)^{b_i-c_i})\frac{(\sum c_i)!}{\prod c_i!} bc(f(ai,bi)(ci1bi1)(1)bici)ci!(ci)!

注意到 ( ∑ c i ) ! ∏ c i ! \frac{(\sum c_i)!}{\prod c_i!} ci!(ci)!这一项,这启示我们对每个 i i i,对 c i c_i ci构造EGF。

显然 F ( x ) = ∑ c x c c ! ( ∑ b ≥ c ( b − 1 c − 1 ) ( − 1 ) b − c f ( a , b ) ) F(x)=\sum_c\frac{x^c}{c!}(\sum_{b\ge c}{b-1\choose c-1}(-1)^{b-c}f(a,b)) F(x)=cc!xc(bc(c1b1)(1)bcf(a,b))

显然系数是一个卷积,然后分治FFT即可求出答案的EGF。

对于强制 1 1 1开头,我们直接令 1 1 1的EGF中的系数(注意这里的系数不包含分母中的 c ! c! c!)向下平移一位即可,同理,强制 1 1 1开头, 1 1 1结尾的时候直接将系数向下平移两位即可。

然后你发现你连样例都过不了。

注意这样是不能够保证原排列本质不同的。

如果一个序列最小循环节长度为 T T T,我们希望算 T T T次,但是在 1 1 1出现了 b b b次的时候我们会把它算 b m T \frac{b}{\frac{m}{T}} Tmb次。

所以我们直接在求 1 1 1的EGF的时候把所有有 b b b的项除掉一个 b b b,这样每个串就会被算到 T m \frac{T}{m} mT。将答案乘上 m m m即可保证正确性了。


代码:

#include<bits/stdc++.h>
#define ll long long
#define re register
#define gc get_char
#define cs const

namespace IO{
	inline char get_char(){
		static cs int Rlen=1<<22|1;
		static char buf[Rlen],*p1,*p2;
		return (p1==p2)&&(p2=(p1=buf)+fread(buf,1,Rlen,stdin),p1==p2)?EOF:*p1++;
	}
	
	template<typename T=int>
	inline T get(){
		char c;T num;
		while(!isdigit(c=gc()));num=c^48;
		while(isdigit(c=gc()))num=(num+(num<<2)<<1)+(c^48);
		return num;
	}
	inline int gi(){return get<int>();}
}
using namespace IO;

using std::cerr;
using std::cout;

cs int mod=998244353;
inline int add(int a,int b){a+=b-mod;return a+(a>>31&mod);}
inline int dec(int a,int b){a-=b;return a+(a>>31&mod);}
inline int mul(int a,int b){ll r=(ll)a*b;return r>=mod?r%mod:r;}
inline int power(int a,int b,int res=1){
	for(;b;b>>=1,a=mul(a,a))(b&1)&&(res=mul(res,a));
	return res;
}
inline void Inc(int &a,int b){a+=b-mod;a+=a>>31&mod;}
inline void Dec(int &a,int b){a-=b;a+=a>>31&mod;}
inline void Mul(int &a,int b){a=mul(a,b);}

cs int bit=20,SIZE=1<<bit|1;

int r[SIZE],*w[bit+1];
int fac[SIZE],inv[SIZE],ifac[SIZE];
inline void init_NTT(){
	for(int re i=1;i<=bit;++i)w[i]=new int[1<<i-1];
	int wn=power(3,mod-1>>bit);w[bit][0]=1;
	for(int re i=1;i<(1<<bit-1);++i)w[bit][i]=mul(w[bit][i-1],wn);
	for(int re i=bit-1;i;--i)
	for(int re j=0;j<(1<<i-1);++j)w[i][j]=w[i+1][j<<1];
	inv[0]=inv[1]=fac[0]=fac[1]=ifac[0]=ifac[1]=1;
	for(int re i=2;i<SIZE;++i){
		fac[i]=mul(fac[i-1],i);
		inv[i]=mul(mod-mod/i,inv[mod%i]);
		ifac[i]=mul(ifac[i-1],inv[i]);
	}
}
inline void NTT(int *A,int len,int typ){
	for(int re i=1;i<len;++i)if(i<r[i])std::swap(A[i],A[r[i]]);
	for(int re i=1,d=1;i<len;i<<=1,++d)
	for(int re j=0;j<len;j+=i<<1)
	for(int re k=0;k<i;++k){
		int &t1=A[j+k],&t2=A[j+k+i],t=mul(t2,w[d][k]);
		t2=dec(t1,t);Inc(t1,t);
	}
	if(typ==-1){
		std::reverse(A+1,A+len);
		for(int re i=0,inv=::inv[len];i<len;++i)Mul(A[i],inv);
	}
}
inline void init_rev(int l){
	for(int re i=0;i<l;++i)r[i]=r[i>>1]>>1|((i&1)?l>>1:0);
}

inline int C(int n,int m){return mul(fac[n],mul(ifac[m],ifac[n-m]));}

using Poly=std::vector<int>;

inline Poly operator*(cs Poly &a,cs Poly &b){
	int n=a.size(),m=b.size(),deg=n+m-1,l=1;
	while(l<deg)l<<=1;init_rev(l);
	static int A[SIZE],B[SIZE];
	memcpy(A,&a[0],sizeof(int)*n);
	memset(A+n,0,sizeof(int)*(l-n));
	memcpy(B,&b[0],sizeof(int)*m);
	memset(B+m,0,sizeof(int)*(l-m));
	NTT(A,l,1),NTT(B,l,1);
	for(int re i=0;i<l;++i)Mul(A[i],B[i]);
	NTT(A,l,-1);return Poly(A,A+deg);
}

cs int N=1e5+5;
int n,m,a[N];
Poly f[N];

inline Poly solve(int l,int r){
	if(l==r){
		for(int re i=1;i<f[l].size();++i)Mul(f[l][i],ifac[i]);
		return f[l];
	}
	int mid=l+r>>1;
	return solve(l,mid)*solve(mid+1,r);
}

signed main(){
#ifdef zxyoi 
	freopen("sakura.in","r",stdin); 
#endif
	n=gi();if(n==1){cout<<gi();return 0;}init_NTT();
	for(int re i=1;i<=n;++i)m+=a[i]=gi();
	for(int re i=1;i<=n;++i){
		Poly g(a[i]+1,0),h(a[i]+1,0);
		for(int re j=1;j<=a[i];++j)g[j]=mul(fac[j-1],C(a[i]+j-1,a[i]-j));
		if(i==1)for(int re j=1;j<=a[i];++j)Mul(g[j],inv[j]);
		for(int re j=0;j<=a[i];++j)h[a[i]-j]=mul(ifac[j],j&1?mod-1:1);
		g=g*h;f[i].resize(a[i]+1);
		for(int re j=1;j<=a[i];++j)f[i][j]=mul(g[a[i]+j],ifac[j-1]);
	}
	Poly F=solve(2,n);
	Poly G(a[1],0);
	for(int re i=0;i<G.size();++i)G[i]=mul(f[1][i+1],ifac[i]);
	G=G*F;int ans=0;
	for(int re i=1;i<G.size();++i)Inc(ans,mul(G[i],fac[i]));
	if(a[1]>1){
		G=Poly(a[1]-1,0);
		for(int re i=0;i<G.size();++i)G[i]=mul(f[1][i+2],ifac[i]);
		G=G*F;
		for(int re i=1;i<G.size();++i)Dec(ans,mul(G[i],fac[i]));
	} 
	cout<<mul(ans,m)<<"\n";
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值