【UOJ#50】【UR #3】链式反应(CDQ分治)(NTT)

传送门


题解:

首先把这个长且扯淡的题面先转成人话。

请你计算有多少棵有根树,父亲儿子标号满足堆性质,并且非叶节点有 c + 2 c+2 c+2个儿子,其中 c ∈ A c\in A cA c c c个儿子全部都是叶子,剩下两个儿子不是叶子,它们的子树符合上述性质(请递归理解)。

一个很显然的DP就出来了,设 f i f_i fi表示 i i i个点的方案数,则

f i = 1 2 ∑ j = 1 ∑ k = 1 [ i − 1 − j − k ∈ A ] ( i − 1 j ) ( i − 1 − j k ) f j f k f_i=\frac{1}{2}\sum_{j=1}\sum_{k=1}[i-1-j-k\in A]{i-1\choose j}{i-1-j\choose k}f_jf_k fi=21j=1k=1[i1jkA](ji1)(ki1j)fjfk

边界 f 1 = 1 , f 0 = 0 f_1=1,f_0=0 f1=1,f0=0,里面除掉2是因为所有交换两个子树的方式都被重复计数了。

上面是一个组合数卷积的形式,考虑利用这个性质进行优化。

F ( x ) = ∑ i f i x i i ! , G ( x ) = F 2 ( x ) , A ( x ) = ∑ i ∈ A x i i ! F(x)=\sum_{i}\frac{f_ix^i}{i!},G(x)=F^2(x),A(x)=\sum_{i\in A}\frac{x^i}{i!} F(x)=ii!fixiG(x)=F2(x)A(x)=iAi!xi,设 f i ′ = f i i ! f_i'=\frac{f_i}{i!} fi=i!fi

考虑到 f i ′ = 1 2 i ∑ j a j g i − 1 − k f_i'=\frac{1}{2i}\sum_{j}a_jg_{i-1-k} fi=2i1jajgi1k,我们很容易发现有 F ′ ( x ) = 1 2 G ( x ) A ( x ) + 1 F^\prime(x)=\frac{1}{2}G(x)A(x)+1 F(x)=21G(x)A(x)+1

好像可以用牛顿迭代,但是我不会构造,以后补(flag)

upd:牛顿迭代做法补上了:https://blog.csdn.net/zxyoi_dreamer/article/details/101052570

考虑分治NTT。按照套路处理 G ( x ) G(x) G(x),对于 l = 1 l=1 l=1的情况是需要对 G G G特殊处理的,因为这时候卷积实际上把平方的两次是算进去了的,但是 l ! = 1 l!=1 l!=1的情况就只算了一次,要补上。

然后就直接CDQ分治NTT即可。


代码:

#include<bits/stdc++.h>
#define ll long long 
#define re register
#define cs const

using std::cerr;
using std::cout;

cs int mod=998244353;
inline int add(int a,int b){a+=b-mod;return a+(a>>31&mod);}
inline int dec(int a,int b){a-=b;return a+(a>>31&mod);}
inline int mul(int a,int b){ll r=(ll)a*b;return r>=mod?r%mod:r;}
inline int power(int a,int b,int res=1){
	for(;b;b>>=1,a=mul(a,a))(b&1)&&(res=mul(res,a));
	return res;
}
inline void Inc(int &a,int b){a+=b-mod;a+=a>>31&mod;}
inline void Dec(int &a,int b){a-=b;a+=a>>31&mod;}
inline void Mul(int &a,int b){a=mul(a,b);}

cs int bit=19,SIZE=1<<19|1;
int r[SIZE],*w[bit+1];
int fac[SIZE],inv[SIZE],ifac[SIZE]; 
inline void init_NTT(){
	for(int re i=1;i<=bit;++i)w[i]=new int[1<<i-1];
	int wn=power(3,mod-1>>bit);w[bit][0]=1;
	for(int re i=1;i<(1<<bit-1);++i)w[bit][i]=mul(w[bit][i-1],wn);
	for(int re i=bit-1;i;--i)
	for(int re j=0;j<(1<<i-1);++j)w[i][j]=w[i+1][j<<1];
	fac[0]=ifac[0]=inv[0]=fac[1]=ifac[1]=inv[1]=1;
	for(int re i=2;i<SIZE;++i){
		fac[i]=mul(fac[i-1],i);
		inv[i]=mul(inv[mod%i],mod-mod/i);
		ifac[i]=mul(ifac[i-1],inv[i]);
	}
}
inline void NTT(int *A,int len,int typ){
	for(int re i=1;i<len;++i)if(i<r[i])std::swap(A[i],A[r[i]]);
	for(int re i=1,d=1;i<len;i<<=1,++d)
	for(int re j=0;j<len;j+=i<<1)
	for(int re k=0;k<i;++k){
		int &t1=A[j+k],&t2=A[i+j+k],t=mul(t2,w[d][k]);
		t2=dec(t1,t),Inc(t1,t);
	}
	if(typ==-1){
		std::reverse(A+1,A+len);
		for(int re i=0,inv=::inv[len];i<len;++i)Mul(A[i],inv);
	}
}
inline void init_rev(int l){
	for(int re i=1;i<l;++i)r[i]=r[i>>1]>>1|((i&1)?l>>1:0);
}

cs int N=2e5+7;
int n;
char s[N];
int a[N],f[N],g[N];
inline void solve(int l,int r){
	if(l==r)return ;
	int mid=l+r>>1;solve(l,mid);
	int lim=r-l+mid-l+1,len=1;
	while(len<lim)len<<=1;init_rev(len);
	static int ta[SIZE],tb[SIZE];
	int l1=mid-l+1,l2=r-l;
	
	memcpy(ta,f+1,sizeof(int)*l2);
	memset(ta+l2,0,sizeof(int)*(len-l2));
	memcpy(tb,f+l,sizeof(int)*l1);
	memset(tb+l1,0,sizeof(int)*(len-l1));
	NTT(ta,len,1);NTT(tb,len,1);
	for(int re i=0;i<len;++i)Mul(ta[i],tb[i]);
	NTT(ta,len,-1);int coef=l>1?2:1;
	for(int re i=mid+1;i<=r;++i)Inc(g[i],mul(coef,ta[i-l-1]));
	
	memcpy(ta,a,sizeof(int)*l2);
	memset(ta+l2,0,sizeof(int)*(len-l2));
	memcpy(tb,g+l,sizeof(int)*l1);
	memset(tb+l1,0,sizeof(int)*(len-l1));
	NTT(ta,len,1);NTT(tb,len,1);
	for(int re i=0;i<len;++i)Mul(ta[i],tb[i]);
	NTT(ta,len,-1);
	for(int re i=mid+1;i<=r;++i)
	Inc(f[i],mul(inv[i<<1],ta[i-l-1]));
	
	solve(mid+1,r); 
}

signed main(){
#ifdef zxyoi
	freopen("reaction.in","r",stdin);
#endif
	init_NTT();
	scanf("%d%s",&n,s);
	for(int re i=0;i<n;++i)a[i]=s[i]=='1'?ifac[i]:0;
	f[1]=1;solve(1,n);
	for(int re i=1;i<=n;++i)cout<<mul(f[i],fac[i])<<"\n";
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值