2018.10.11【SDOI2017】【洛谷P3705】【BZOJ4819】新生的舞会(0/1分数规划)(最大费用最大流)

洛谷传送门

BZOJ传送门


解析:

随便写一发过了样例然后就A了?

思路:

分数规划的式子都列好了。。。就等你想出验证方法。。。

一看这又双叒叕是一个匹配问题。。。

还能是什么。。。网络流。然后是男生女生配 (滑稽) 这不是二分图边的最大权匹配吗。。。

于是就把问题转化到了最大费用最大流上面。。。

我们直接建图源点向每个男生连边,每个男生向每个女生连边,每个女生向汇点连边。以上所有边的容量为 1 1 1

然后是套路,将所有费用取相反数,求最小费用流就行了。

至于费用,所有源点和汇点连出来的边都赋费用为0,然后男生 i i i和女生 j j j的费用就是 a i , j − b i , j × m i d a_{i,j}-b_{i,j}\times mid ai,jbi,j×mid,其中 m i d mid mid是我们目前二分得到的答案。

显然最大流流量永远都是 n n n,所以我们要用的就是费用了。

最后算出的费用用于调整二分上下界就行了。

最后,分数规划二分解法的技巧:其实没有必要逼自己算出到底该怎么调整上下界,照着两种方式都过一下样例就行了。

但是写 D i n k e l B a c h DinkelBach DinkelBach迭代法就没有这种问题,还跑的更快。。。
D i n k e l B a c h DinkelBach DinkelBach迭代法题解


代码:

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define re register
#define gc getchar
#define pc putchar
#define cs const

inline int getint(){
	re int num;
	re char c;
	while(!isdigit(c=gc()));num=c^48;
	while(isdigit(c=gc()))num=(num<<1)+(num<<3)+(c^48);
	return num;
}

cs int N=203,M=100205;
cs int S=0,T=N-1;
cs int INF=0x3f3f3f3f;
cs double eps=1e-6;
int last[N],nxt[M<<1],to[M<<1],ecnt=1;
int cap[M<<1];
double w[M<<1];
inline void addedge(int u,int v){
	nxt[++ecnt]=last[u],last[u]=ecnt,to[ecnt]=v;
	nxt[++ecnt]=last[v],last[v]=ecnt,to[ecnt]=u;
}

int cur[N];
double dist[N];
bool vis[N];
queue<int>q;
inline bool SPFA(){
	memset(dist,127,sizeof dist);
	memset(vis,0,sizeof vis);
	q.push(S);cur[S]=last[S];
	dist[S]=0;
	while(!q.empty()){
		int u=q.front();
		q.pop();
		vis[u]=false;
		for(int re e=last[u],v=to[e];e;v=to[e=nxt[e]]){
			if(cap[e]&&dist[v]>dist[u]+w[e]){
				dist[v]=dist[u]+w[e];
				if(!vis[v])vis[v]=true,q.push(v);
				cur[v]=last[v];
			}
		}
	}
	return dist[T]<INF;
}

inline int dfs(cs int &u,cs int &flow,double &cost){
	if(u==T){
		cost+=flow*dist[T];
		return flow;
	}
	int ans=0;
	vis[u]=true;
	for(int &e=cur[u],v=to[e];e;v=to[e=nxt[e]]){
		if(cap[e]&&!vis[v]&&fabs(dist[u]+w[e]-dist[v])<eps){
			int delta=dfs(v,min(flow-ans,cap[e]),cost);
			if(delta){
				cap[e]-=delta;
				cap[e^1]+=delta;
				ans+=delta;
				if(ans==flow)return ans;
			}
		}
	}
	return ans;
}

inline double MCMF(){
	double cost=0;
	while(SPFA())dfs(S,INF,cost);
	return cost;
}

int n;
int a[N][N];
int b[N][N];
int edge[N][N];

inline void build(){
	for(int re i=1;i<=n;++i)
	for(int re j=1;j<=n;++j)
	addedge(i,j+100),edge[i][j]=ecnt;
	for(int re i=1;i<=n;++i)addedge(S,i),addedge(i+100,T);
}

inline bool check(double kkk){
	for(int re i=2;i<=ecnt;i+=2)cap[i]=1,cap[i^1]=0;
	for(int re i=1;i<=n;++i)
	for(int re j=1;j<=n;++j){
		int e=edge[i][j];
		w[e]=a[i][j]*1.0-b[i][j]*kkk;
		w[e^1]=-w[e];
	}
	double cost=MCMF();
	return cost>0;
}

signed main(){
	n=getint();
	for(int re i=1;i<=n;++i)
	for(int re j=1;j<=n;++j)a[i][j]=getint();
	for(int re i=1;i<=n;++i)
	for(int re j=1;j<=n;++j)b[i][j]=getint();
	build();
	double l=0,r=10000.0;
	while(l+1e-7<r){
		double mid=(l+r)/2;
		if(check(mid))r=mid;
		else l=mid;
	}
	printf("%.6f",l);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值