洛谷传送门
BZOJ传送门
解析:
随便写一发过了样例然后就A了?
思路:
分数规划的式子都列好了。。。就等你想出验证方法。。。
一看这又双叒叕是一个匹配问题。。。
还能是什么。。。网络流。然后是男生女生配 (滑稽) 这不是二分图边的最大权匹配吗。。。
于是就把问题转化到了最大费用最大流上面。。。
我们直接建图源点向每个男生连边,每个男生向每个女生连边,每个女生向汇点连边。以上所有边的容量为 1 1 1。
然后是套路,将所有费用取相反数,求最小费用流就行了。
至于费用,所有源点和汇点连出来的边都赋费用为0,然后男生 i i i和女生 j j j的费用就是 a i , j − b i , j × m i d a_{i,j}-b_{i,j}\times mid ai,j−bi,j×mid,其中 m i d mid mid是我们目前二分得到的答案。
显然最大流流量永远都是 n n n,所以我们要用的就是费用了。
最后算出的费用用于调整二分上下界就行了。
最后,分数规划二分解法的技巧:其实没有必要逼自己算出到底该怎么调整上下界,照着两种方式都过一下样例就行了。
但是写
D
i
n
k
e
l
B
a
c
h
DinkelBach
DinkelBach迭代法就没有这种问题,还跑的更快。。。
D
i
n
k
e
l
B
a
c
h
DinkelBach
DinkelBach迭代法题解
代码:
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define re register
#define gc getchar
#define pc putchar
#define cs const
inline int getint(){
re int num;
re char c;
while(!isdigit(c=gc()));num=c^48;
while(isdigit(c=gc()))num=(num<<1)+(num<<3)+(c^48);
return num;
}
cs int N=203,M=100205;
cs int S=0,T=N-1;
cs int INF=0x3f3f3f3f;
cs double eps=1e-6;
int last[N],nxt[M<<1],to[M<<1],ecnt=1;
int cap[M<<1];
double w[M<<1];
inline void addedge(int u,int v){
nxt[++ecnt]=last[u],last[u]=ecnt,to[ecnt]=v;
nxt[++ecnt]=last[v],last[v]=ecnt,to[ecnt]=u;
}
int cur[N];
double dist[N];
bool vis[N];
queue<int>q;
inline bool SPFA(){
memset(dist,127,sizeof dist);
memset(vis,0,sizeof vis);
q.push(S);cur[S]=last[S];
dist[S]=0;
while(!q.empty()){
int u=q.front();
q.pop();
vis[u]=false;
for(int re e=last[u],v=to[e];e;v=to[e=nxt[e]]){
if(cap[e]&&dist[v]>dist[u]+w[e]){
dist[v]=dist[u]+w[e];
if(!vis[v])vis[v]=true,q.push(v);
cur[v]=last[v];
}
}
}
return dist[T]<INF;
}
inline int dfs(cs int &u,cs int &flow,double &cost){
if(u==T){
cost+=flow*dist[T];
return flow;
}
int ans=0;
vis[u]=true;
for(int &e=cur[u],v=to[e];e;v=to[e=nxt[e]]){
if(cap[e]&&!vis[v]&&fabs(dist[u]+w[e]-dist[v])<eps){
int delta=dfs(v,min(flow-ans,cap[e]),cost);
if(delta){
cap[e]-=delta;
cap[e^1]+=delta;
ans+=delta;
if(ans==flow)return ans;
}
}
}
return ans;
}
inline double MCMF(){
double cost=0;
while(SPFA())dfs(S,INF,cost);
return cost;
}
int n;
int a[N][N];
int b[N][N];
int edge[N][N];
inline void build(){
for(int re i=1;i<=n;++i)
for(int re j=1;j<=n;++j)
addedge(i,j+100),edge[i][j]=ecnt;
for(int re i=1;i<=n;++i)addedge(S,i),addedge(i+100,T);
}
inline bool check(double kkk){
for(int re i=2;i<=ecnt;i+=2)cap[i]=1,cap[i^1]=0;
for(int re i=1;i<=n;++i)
for(int re j=1;j<=n;++j){
int e=edge[i][j];
w[e]=a[i][j]*1.0-b[i][j]*kkk;
w[e^1]=-w[e];
}
double cost=MCMF();
return cost>0;
}
signed main(){
n=getint();
for(int re i=1;i<=n;++i)
for(int re j=1;j<=n;++j)a[i][j]=getint();
for(int re i=1;i<=n;++i)
for(int re j=1;j<=n;++j)b[i][j]=getint();
build();
double l=0,r=10000.0;
while(l+1e-7<r){
double mid=(l+r)/2;
if(check(mid))r=mid;
else l=mid;
}
printf("%.6f",l);
return 0;
}