【SHOI2016】【洛谷P4336】【BZOJ4596】黑暗前的幻想乡(容斥原理)(矩阵树)

洛谷传送门

BZOJ传送门


题解:

很显然我们将恰好包含所有 n − 1 n-1 n1种转化为,最多包含 n − 1 n-1 n1种-最多包含 n − 2 n-2 n2种+最多包含 n − 3 n-3 n3 ⋯ \cdots

然后矩阵树随便做吧。

太久没写矩阵树了,差点忘记行列式交换两行需要乘 − 1 -1 1虽然矩阵树根本不用考虑这个,因为我这种写法种需要交换两行的情况答案一定是0


代码:

#include<bits/stdc++.h>
#define ll long long
#define re register
#define gc get_char
#define cs const

namespace IO{
	inline char get_char(){
		static cs int Rlen=1<<22|1;
		static char buf[Rlen],*p1,*p2;
		return (p1==p2)&&(p2=(p1=buf)+fread(buf,1,Rlen,stdin),p1==p2)?EOF:*p1++;
	}
	
	template<typename T>
	inline T get(){
		char c;
		while(!isdigit(c=gc()));T num=c^48;
		while(isdigit(c=gc()))num=(num+(num<<2)<<1)+(c^48);
		return num;
	}
	inline int getint(){return get<int>();}
}
using namespace IO;

using std::cerr;
using std::cout;
#define pii std::pair<int,int>
#define fi first
#define se second

cs int mod=1e9+7;
inline int add(int a,int b){return (a+=b)>=mod?a-mod:a;}
inline int dec(int a,int b){return (a-=b)<0?a+mod:a;}
inline int mul(int a,int b){ll r=(ll)a*b;return r>=mod?r%mod:r;}
inline int power(int a,int b,int res=1){
	for(;b;b>>=1,a=mul(a,a))(b&1)&&(res=mul(res,a));
	return res;
}
inline int Inc(int &a,int b){return (a+=b)>=mod&&(a-=mod),a;}
inline int Dec(int &a,int b){return (a-=b)<0&&(a+=mod),a;}

cs int N=20;

int n;
int a[N][N],b[N][N];

inline int det(){
	for(int re i=1;i<n;++i)
	for(int re j=1;j<n;++j)
	b[i][j]=a[i][j]<0?a[i][j]+mod:a[i][j];
	int res=1;
	for(int re i=1;i<n;++i){
		int p=-1;
		for(int re j=i;j<n&&p==-1;++j)b[j][i]&&(p=j);
		if(p==-1)return 0;
		if(p!=i){
			for(int re j=i;j<n;++j)std::swap(b[i][j],b[p][j]);
			res=dec(0,res);
		}
		res=mul(res,b[i][i]);
		p=power(b[i][i],mod-2);
		for(int re j=i;j<n;++j)b[i][j]=mul(b[i][j],p);
		for(int re j=i+1;j<n;++j)if(b[j][i]){
			int tmp=b[j][i];
			for(int re k=i;k<n;++k)Dec(b[j][k],mul(tmp,b[i][k]));
		}
	}
	return res;
}
std::vector<pii> vec[N];

int dfs(int cur,int coef){
	if(cur==n)return mul(coef,det());
	int tmp=dfs(cur+1,coef);
	for(int re i=0,lim=vec[cur].size();i<vec[cur].size();++i){
		pii &t=vec[cur][i];
		++a[t.fi][t.fi];
		++a[t.se][t.se];
		--a[t.fi][t.se];
		--a[t.se][t.fi];
	}
	Inc(tmp,dfs(cur+1,mod-coef));
	for(int re i=0,lim=vec[cur].size();i<vec[cur].size();++i){
		pii &t=vec[cur][i];
		--a[t.fi][t.fi];
		--a[t.se][t.se];
		++a[t.fi][t.se];
		++a[t.se][t.fi];
	}
	return tmp;
}

signed main(){
//	freopen("dark.in","r",stdin);
	scanf("%d",&n);
	for(int re i=1;i<n;++i){
		int m,u,v;scanf("%d",&m);
		while(m--)scanf("%d%d",&u,&v),vec[i].push_back(pii(u,v));
	}
	cout<<dfs(1,(n&1)?1:(mod-1));
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值