【JSOI2008】【BZOJ1014】【洛谷P4036】火星人(替罪羊)(字符串哈希)

洛谷传送门

BZOJ传送门


题解:

求LCP显然直接哈希二分就行了,由于需要支持中间插入一个字符,需要用平衡树。

由于这道题没有区间合并操作,而且好像有点卡FHQ_Treap和Splay,本着科学打脸观写了一发替罪羊跑到飞起。


代码:

#include<bits/stdc++.h>
#define ll long long
#define re register
#define gc get_char
#define cs const

namespace IO{
	inline char get_char(){
		static cs int Rlen=1<<22|1;
		static char buf[Rlen],*p1,*p2;
		return (p1==p2)&&(p2=(p1=buf)+fread(buf,1,Rlen,stdin),p1==p2)?EOF:*p1++;
	}
	
	inline char getalpha(){char c;while(!isalpha(c=gc()));return c;}
	template<typename T>
	inline T get(){
		char c;
		while(!isdigit(c=gc()));T num=c^48;
		while(isdigit(c=gc()))num=(num+(num<<2)<<1)+(c^48);
		return num;
	}
	inline int getint(){return get<int>();}
}
using namespace IO;

using std::cerr;
using std::cout;
#define ull unsigned ll

cs int N=1e5+5;

cs ull b=47;
ull pw[N];

inline void Hash_init(){
	pw[0]=1;
	for(int re i=1;i<N;++i)pw[i]=pw[i-1]*b;
}

char s[N];

namespace SGT{
	int val[N];
	ull sum[N];
	int lc[N],rc[N];
	int siz[N],now;
	int nd[N],cnt;
	cs double alpha=0.6;
	int rt,*p;
	
	inline void pushup(int u){
		sum[u]=sum[lc[u]]*pw[siz[rc[u]]+1]+val[u]*pw[siz[rc[u]]]+sum[rc[u]];
		siz[u]=siz[lc[u]]+1+siz[rc[u]]; 
	}
	
	inline bool bad(int u){
		return siz[lc[u]]>siz[u]*alpha||siz[rc[u]]>siz[u]*alpha;
	}
	
	void dfs_get(int u){
		if(!u)return ;
		dfs_get(lc[u]);
		nd[++cnt]=u;
		dfs_get(rc[u]);
	}
	
	inline void build(int &u,int l,int r){
		int mid=l+r>>1;
		u=nd[mid];lc[u]=rc[u]=0;
		if(l<mid)build(lc[u],l,mid-1);
		
		if(mid<r)build(rc[u],mid+1,r);
		pushup(u);
	}
	
	inline void insert(int &u,int k,int v){
		if(!u){
			u=++now;
			val[u]=sum[u]=v;
			siz[u]=1;
			return ;
		}
		if(k<=siz[lc[u]])insert(lc[u],k,v);
		else insert(rc[u],k-siz[lc[u]]-1,v);
		pushup(u);
		if(bad(u))p=&u;
	}
	
	inline void modify(int u,int k,int v){
		if(k<=siz[lc[u]])modify(lc[u],k,v);
		else if(k==siz[lc[u]]+1)val[u]=v;
		else modify(rc[u],k-siz[lc[u]]-1,v);
		pushup(u);
	}
	
	inline ull query(int u,int l,int r){
		if(l==1&&r==siz[u])return sum[u];
		if(l>r)return 0;
		if(r<=siz[lc[u]])return query(lc[u],l,r);
		if(siz[lc[u]]+1<l)return query(rc[u],l-siz[lc[u]]-1,r-siz[lc[u]]-1);
		return query(lc[u],l,siz[lc[u]])*pw[r-siz[lc[u]]]+val[u]*pw[r-siz[lc[u]]-1]+query(rc[u],1,r-siz[lc[u]]-1);
	}
	
	inline void init(){
		scanf("%s",s+1);now=strlen(s+1);
		cnt=now;
		for(int re i=1;i<=cnt;++i)nd[i]=i,val[i]=s[i]-'a';
		build(rt,1,cnt);
	}
	
	inline void final_string(){
		cnt=0;
		dfs_get(rt);
		for(int re i=1;i<=cnt;++i)cout<<(char)(val[nd[i]]+'a');
	}
}

inline void Insert(int pos,int v){
	using namespace SGT;
	p=NULL;
	insert(rt,pos,v);
	if(p!=NULL){
		cnt=0;
		dfs_get(*p);
		build(*p,1,cnt);
	}
}

inline void Modify(int pos,int v){SGT::modify(SGT::rt,pos,v);}

inline ull Query(int l,int r){return SGT::query(SGT::rt,l,r);}

inline int query(int x,int y){
	int l=0,r=SGT::now-std::max(x,y)+1;
	while(l<r){
		int mid=(l+r+1)>>1;
		if(Query(x,x+mid-1)==Query(y,y+mid-1))l=mid;
		else r=mid-1;
	}
	return l;
}

signed main(){
	Hash_init();
	SGT::init();
	int T=getint();
	while(T--)switch(getalpha()){
		case 'Q':cout<<query(getint(),getint())<<"\n";break;
		case 'R':{
			int x=getint();
			Modify(x,getalpha()-'a');
			break;
		}
		case 'I':{
			int x=getint();
			Insert(x,getalpha()-'a');
			break;
		}
	}
	return 0;
}
根据引用[1],dp[u][j]表示在u子树中选取恰好j个人时能获得的最大价值。而根据引用,该问题的时间复杂度为O(log2​104×nm)。 对于洛谷P2143 [JSOI2010] 巨额奖金问题,我们可以使用动态规划来解决。具体步骤如下: 1. 首先,我们需要构建一棵树来表示员工之间的关系。树的根节点表示公司的总经理,其他节点表示员工。每个节点都有一个权值,表示该员工的奖金金额。 2. 接下来,我们可以使用动态规划来计算每个节点的dp值。对于每个节点u,我们可以考虑两种情况: - 如果选择节点u,则dp[u][j] = dp[v][j-1] + value[u],其中v是u的子节点,value[u]表示节点u的奖金金额。 - 如果不选择节点u,则dp[u][j] = max(dp[v][j]),其中v是u的子节点。 3. 最后,我们可以通过遍历树的所有节点,计算出dp[u][j]的最大值,即为所求的巨额奖金。 下面是一个示例代码,演示了如何使用动态规划来解决洛谷P2143 [JSOI2010] 巨额奖金问题: ```python # 构建树的数据结构 class Node: def __init__(self, value): self.value = value self.children = [] # 动态规划求解最大奖金 def max_bonus(root, j): dp = [[0] * (j+1) for _ in range(len(root)+1)] def dfs(node): if not node: return for child in node.children: dfs(child) for k in range(j, 0, -1): dp[node.value][k] = max(dp[node.value][k], dp[node.value][k-1] + node.value) for child in node.children: for k in range(j, 0, -1): for l in range(k-1, -1, -1): dp[node.value][k] = max(dp[node.value][k], dp[node.value][k-l-1] + dp[child.value][l]) dfs(root) return dp[root.value][j] # 构建树 root = Node(1) root.children.append(Node(2)) root.children.append(Node(3)) root.children[0].children.append(Node(4)) root.children[0].children.append(Node(5)) root.children[1].children.append(Node(6)) # 求解最大奖金 j = 3 max_bonus_value = max_bonus(root, j) print("最大奖金为:", max_bonus_value) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值