【HDU6426】【LOJ6538】Alkane(生成函数)(分治NTT)(Burnside)

37 篇文章 1 订阅
12 篇文章 0 订阅

传送门


题解 :

询问 n n n个碳的烷基和烷烃个数,即儿子数不超过 3 3 3的有根树和度数不超过 4 4 4的无根树个数。

先考虑烷基,设其生成函数为 A ( x ) A(x) A(x)

考虑其儿子的情况,使用Burnside来计数,一共三个儿子 3 ! = 6 3!=6 3!=6种不同的置换。
对于恒同变换,生成函数为 A 3 ( x ) A^3(x) A3(x),对于一个对换,生成函数为 3 A ( x ) A ( x 2 ) 3A(x)A(x^2) 3A(x)A(x2),对于三轮换,生成函数为 2 A ( x 3 ) 2A(x^3) 2A(x3),考虑一下 0 0 0个点的时候以及算上这个新的根,则有:

A ( x ) = 1 + x A 3 ( x ) + 3 A ( x ) A ( x 2 ) + 2 A ( x 3 ) 6 A(x)=1+x\frac{A^3(x)+3A(x)A(x^2)+2A(x^3)}{6} A(x)=1+x6A3(x)+3A(x)A(x2)+2A(x3)

可以牛顿迭代,这里给出一个分治NTT的做法。

考虑区间 [ l , m i d ) [l,mid) [l,mid)对区间 [ m i d , r ) [mid,r) [mid,r)的影响(注意这里是前闭后开)。
A ( x 3 ) A(x^3) A(x3)可以直接统计。
A ( x ) A ( x 2 ) A(x)A(x^2) A(x)A(x2)可以拿 A [ l ⋯ m i d ] A[l\cdots mid] A[lmid] A ( x 2 ) A(x^2) A(x2)做卷积就行了。
A 3 ( x ) A^3(x) A3(x)是这里面唯一有点扯的。
由于计算的执行方式是分治 N T T NTT NTT,所以当当前计算的左端点不为 0 0 0的时候, 2 l 2l 2l直接就飞过 r r r了。所以实际上是拿两个 A [ 0 ⋯ r − l ] A[0\cdots r-l] A[0rl]和一个 A [ l ⋯ m i d − 1 ] A[l\cdots mid-1] A[lmid1]做卷积。
而且还要注意一点,当 l = 0 l=0 l=0的时候相当于直接把总贡献算出来了,但是当 l ! = 0 l!=0 l!=0的时候,我们只算了三次方中的一种组合方式,还有两种需要计算贡献。比如我需要算的是 A 1 ⋅ A 2 ⋅ A 3 A_1\cdot A_2\cdot A_3 A1A2A3,则 A 1 [ 0 ⋯ r − l ] ⋅ A 2 [ 0 ⋯ r − l ] ⋅ A 3 [ l ⋯ m i d − 1 ] A_1[0\cdots r-l]\cdot A_2[0\cdots r-l]\cdot A_3[l\cdots mid-1] A1[0rl]A2[0rl]A3[lmid1]被算了一次,另外两种方式就漏掉了,需要补上。

于是我们利用分治NTT处理了烷基的计数,顺便A掉LOJ#6538. 烷基计数 加强版 加强版

然后考虑烷烃,设其生成函数为 B ( x ) B(x) B(x)

令一棵树上的点等价类个数为 c c c,边等价类个数为 d d d,对称边个数为 e e e

两个点处于同一点等价类中当且仅当以任意一个点为根得到的两棵有根树同构。
两条边处于同一边等价类中当且仅当删去其中任何一条边之后得到的两棵有根树同构。
一条边为对称边当且仅当删去这条边之后得到的两棵有根树同构。

由于 e ≤ 1 e\leq 1 e1,对 e e e进行分类讨论:

  1. e = 0 e=0 e=0,即无对称边,任选一个重心为根转化为有根树,显然这个根独自成为一个点等价类,对于剩下所有的点,它们的父亲边在同一个边等价类中当且仅当它们在同一个点等价类中。 c − d = 1 c-d=1 cd=1
  2. e = 1 e=1 e=1,有一条对称边,在这条边中间插入一个点作为根转化为有根树,同理剩下的每一个点等价类唯一对应一个边等价类。 c − d = 0 c-d=0 cd=0

所以对于一棵树有 c − d + e = 1 c-d+e=1 cd+e=1

那么对于树的计数,考虑 ∑ T 1 = ∑ T c ( T ) − ∑ T d ( T ) + ∑ T e ( T ) \sum_{T}1=\sum_{T}c(T)-\sum_{T}d(T)+\sum_{T}e(T) T1=Tc(T)Td(T)+Te(T)

设上面三个的生成函数分别为 C ( x ) , D ( x ) , E ( x ) C(x),D(x),E(x) C(x),D(x),E(x)

则有 B ( x ) = C ( x ) − D ( x ) + E ( x ) B(x)=C(x)-D(x)+E(x) B(x)=C(x)D(x)+E(x)

很显然地,我们有 E ( x ) = A ( x 2 ) E(x)=A(x^2) E(x)=A(x2),考虑切掉对称边转化为有根树,实际上就是烷基的计数。

对于 D ( x ) D(x) D(x),实际上就是考虑在这条边中间插入一个点能得到多少不同构的有根树。

考虑Burnside,对于恒同变换,只要求两棵子树非空,对于一个对换,只要求两个非空子树同构,则: D ( x ) = ( A ( x ) − 1 ) 2 + ( A ( x 2 ) − 1 ) 2 D(x)=\frac{(A(x)-1)^2+(A(x^2)-1)}{2} D(x)=2(A(x)1)2+(A(x2)1)

对于 C ( x ) C(x) C(x),考虑对其四个儿子进行旋转变换,还是用Burnside来计数。

一共有 4 ! = 24 4!=24 4!=24种置换。
对于恒同变换, A 4 ( x ) A^4(x) A4(x)
对于单对换, 6 A 2 ( x ) A ( x 2 ) 6A^2(x)A(x^2) 6A2(x)A(x2)
对于双对换, 3 A 2 ( x 2 ) 3A^2(x^2) 3A2(x2)
对于三轮换, 8 A ( x ) A ( x 3 ) 8A(x)A(x^3) 8A(x)A(x3)
对于四轮换, 6 A ( x 4 ) 6A(x^4) 6A(x4)

所以 C ( x ) = x ⋅ A 4 ( x ) + 6 A 2 ( x ) A ( x 2 ) + 3 A 2 ( x 2 ) + 8 A ( x ) A ( x 3 ) + 6 A ( x 4 ) 24 C(x)=x\cdot \frac{A^4(x)+6A^2(x)A(x^2)+3A^2(x^2)+8A(x)A(x^3)+6A(x^4)}{24} C(x)=x24A4(x)+6A2(x)A(x2)+3A2(x2)+8A(x)A(x3)+6A(x4)

然后把 B B B算出来就好了。


代码:

#include<bits/stdc++.h>
#define ll long long
#define re register
#define cs const

using std::cerr;
using std::cout;

cs int mod=998244353;
inline int add(int a,int b){return (a+=b)>=mod?a-mod:a;}
inline int dec(int a,int b){return (a-=b)<0?a+mod:a;}
inline int mul(int a,int b){ll r=(ll)a*b;return r>=mod?r%mod:r;}
inline int power(int a,int b,int res=1){
	for(;b;b>>=1,a=mul(a,a))(b&1)&&(res=mul(res,a));
	return res;
}
inline void Inc(int &a,int b){(a+=b)>=mod&&(a-=mod);}
inline void Dec(int &a,int b){(a-=b)<0&&(a+=mod);}
cs int i2=(mod+1)/2,i3=(mod+1)/3,i4=mul(i2,i2),i6=mul(i2,i3),i24=mul(i4,i6);

cs int N=1<<19|1,bit=19;

int r[N],*w[bit+1];

inline void init_NTT(){
	for(int re i=1;i<=bit;++i)w[i]=new int[1<<i-1];
	int wn=power(3,(mod-1)>>bit);
	w[bit][0]=1;
	for(int re i=1;i<(1<<bit-1);++i)w[bit][i]=mul(w[bit][i-1],wn);
	for(int re i=bit-1;i;--i)
	for(int re j=0;j<(1<<i-1);++j)w[i][j]=w[i+1][j<<1];
}
inline void NTT(int *A,int len,int typ){
	for(int re i=0;i<len;++i)if(r[i]>i)std::swap(A[i],A[r[i]]);
	for(int re i=1,t=1;i<len;i<<=1,++t)
	for(int re j=0;j<len;j+=i<<1)
	for(int re k=0;k<i;++k){
		int x=A[j+k],y=mul(A[j+k+i],w[t][k]);
		A[j+k]=add(x,y);
		A[j+k+i]=dec(x,y);
	}
	if(typ==-1){
		std::reverse(A+1,A+len);
		for(int re i=0,inv=power(len,mod-2);i<len;++i)A[i]=mul(A[i],inv);
	}
}
inline void init_rev(int len){
	for(int re i=0;i<len;++i)r[i]=r[i>>1]>>1|((i&1)?len>>1:0);
}

int A[N],A1[N],A2[N],A3[N],A4[N],B[N],C[N],D[N];

void solve(int l,int r){
	if(l+1==r)return ;
	int mid=l+r>>1,t=(r-l)<<1,len=1;
	solve(l,mid);
	while(len<t)len<<=1;
	init_rev(len);
	memcpy(C,A+l,sizeof(int)*(mid-l));
	memcpy(A1,A,sizeof(int)*(r-l));
	for(int re i=0;2*i<r-l;++i)A2[i<<1]=A[i];
	for(int re i=l;3*i+1<r;++i)
	if(3*i+1>=mid)Inc(A[3*i+1],mul(A[i],i3));
	NTT(C,len,1),NTT(A1,len,1),NTT(A2,len,1);
	for(int re i=0;i<len;++i)D[i]=mul(C[i],A2[i]);
	NTT(D,len,-1);
	for(int re i=mid;i<r;++i)Inc(A[i],mul(D[i-l-1],i2)); 
	for(int re i=0;i<len;++i)D[i]=mul(C[i],mul(A1[i],A1[i]));
	NTT(D,len,-1);
	int coef=l?i2:i6;
	for(int re i=mid;i<r;++i)Inc(A[i],mul(D[i-l-1],coef));
	memset(C,0,sizeof(int)*len);
	memset(A1,0,sizeof(int)*len);
	memset(A2,0,sizeof(int)*len);
	solve(mid,r);
}

inline void work(int n){
	A[0]=1;solve(0,n);
	int t=n<<2,len=1;
	while(len<t)len<<=1;
	init_rev(len);
	for(int re i=0;i<n;++i)A1[i]=A[i];
	for(int re i=0;2*i<n;++i)A2[i*2]=A[i];
	for(int re i=0;3*i<n;++i)A3[i*3]=A[i];
	for(int re i=0;4*i<n;++i)A4[i*4]=A[i];
	NTT(A1,len,1),NTT(A2,len,1),NTT(A3,len,1),NTT(A4,len,1);
	for(int re i=0;i<len;++i){
		C[i]=mul(mul(A1[i],A1[i]),mul(A1[i],A1[i]));
		Inc(C[i],mul(3,mul(A2[i],A2[i])));
		Inc(C[i],mul(6,mul(A2[i],mul(A1[i],A1[i]))));
		Inc(C[i],mul(8,mul(A1[i],A3[i])));
		Inc(C[i],mul(6,A4[i]));
		C[i]=mul(C[i],i24);
	}
	NTT(C,len,-1);
	for(int re i=0;i<len;++i){
		int x=dec(A1[i],1),y=dec(A2[i],1);
		D[i]=mul(i2,add(mul(x,x),y));
	}
	NTT(D,len,-1);
	for(int re i=0;i<n;++i){
		B[i]=dec(i?C[i-1]:0,D[i]);
		if(~i&1)Inc(B[i],A[i>>1]);
	}
}

signed main(){
	init_NTT();
//	freopen("alkane.in","r",stdin);
	work(1e5+1);
	int T;scanf("%d",&T);
	while(T--){
		int a;scanf("%d",&a);
		cout<<B[a]<<" "<<A[a]<<"\n";
	}
	return 0;
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值