【洛谷P4233】射命丸文的笔记(竞赛图)(多项式求逆)

传送门


题解:

分为两部分:求所有 n n n个点竞赛图中哈密顿回路的个数,求所有 n n n个点的有哈密顿回路的竞赛图个数。

首先看第一部分,求所有 n n n个点竞赛图中哈密顿回路的个数。

首先所有不同的哈密顿回路是一个圆排列,有 ( n − 1 ) ! (n-1)! (n1)!种,将这个哈密顿回路包含的 n n n条边定向后,剩下的可以任意朝向,所以每种哈密顿回路存在于 2 ( n 2 ) − n 2^{{n\choose 2}-n} 2(2n)n个不同的竞赛图中,所有 n n n个点的竞赛图的哈密顿回路总数为 ( n − 1 ) ! ⋅ 2 ( n 2 ) − n (n-1)!\cdot 2^{{n\choose 2}-n} (n1)!2(2n)n

然后考虑求有多少个 n n n个点的竞赛图含有至少一条哈密顿回路。

由竞赛图的性质我们知道一个竞赛图包含哈密顿回路,当且仅当其是一个强连通竞赛图。

所以实际上我们需要求的是强连通竞赛图的数量。

f n f_n fn表示 n n n个点的强连通竞赛图数量,考虑求所有非强连通的竞赛图数量,枚举缩 S C C SCC SCC成链之后第一个连通分量的大小可以得到:

f n = 2 ( n 2 ) − ∑ i = 1 n − 1 f i ( n i ) 2 ( n − i 2 ) f_n=2^{n\choose 2}-\sum_{i=1}^{n-1}f_i{n\choose i}2^{n-i\choose 2} fn=2(2n)i=1n1fi(in)2(2ni)

g i = 2 ( i 2 ) g_i=2^{i\choose 2} gi=2(2i),上式化为:

f n = g n − ∑ i = 1 n − 1 f i ( n i ) g n − i f_n=g_n-\sum_{i=1}^{n-1}f_i{n\choose i}g_{n-i} fn=gni=1n1fi(in)gni

很显然是个 E G F EGF EGF的卷积,令 f 0 = 0 , f i ′ = f i i ! , g i ′ = g i i ! f_0=0,f'_i=\frac{f_i}{i!},g'_i=\frac{g_i}{i!} f0=0,fi=i!fi,gi=i!gi F ( x ) = ∑ i = 0 ∞ f i ′ x i , G ( x ) = ∑ j = 0 ∞ g i ′ x i F(x)=\sum\limits_{i=0}^\infty f'_ix^i,G(x)=\sum\limits_{j=0}^\infty g'_ix^i F(x)=i=0fixi,G(x)=j=0gixi

首先转化一下,注意我们令 f 0 = 0 f_0=0 f0=0

g n ′ = ∑ i = 0 n f i ′ g n − i ′ g'_n=\sum_{i=0}^nf'_ig'_{n-i} gn=i=0nfigni

卷积的时候注意补齐常数项:

G ( x ) = G ( x ) ⋅ F ( x ) + 1 F ( x ) = 1 − 1 G ( x ) G(x)=G(x)\cdot F(x)+1\\F(x)=1-\frac{1}{G(x)} G(x)=G(x)F(x)+1F(x)=1G(x)1

多项式求个逆就行了。


代码:

#include<bits/stdc++.h>
#define ll long long
#define re register
#define cs const

using std::cerr;
using std::cout;

cs int mod=998244353;
inline int add(int a,int b){return (a+=b)>=mod?a-mod:a;}
inline int dec(int a,int b){return (a-=b)<0?a+mod:a;}
inline int mul(int a,int b){ll r=(ll)a*b;return r>=mod?r%mod:r;}
inline int power(int a,ll b,int res=1){b%=mod-1;
	for(;b;b>>=1,a=mul(a,a))(b&1)&&(res=mul(res,a));
	return res;
}
inline void Inc(int &a,int b){(a+=b)>=mod&&(a-=mod);}
inline void Dec(int &a,int b){(a-=b)<0&&(a+=mod);}

cs int N=1e5+5;

int fac[N],ifac[N];
inline void init_inv(int n=N-1){
	fac[0]=fac[1]=ifac[0]=ifac[1]=1;
	for(int re i=2;i<=n;++i)fac[i]=mul(fac[i-1],i);
	ifac[n]=power(fac[n],mod-2);
	for(int re i=n-1;i;--i)ifac[i]=mul(ifac[i+1],i+1);
}

typedef std::vector<int> Poly;

cs int SIZE=1<<19|1,bit=19;

int r[SIZE],*w[bit+1];
inline void init_NTT(){
	for(int re i=1;i<=bit;++i)w[i]=new int[(1<<i-1)+1];
	int wn=power(3,mod-1>>bit);
	w[bit][0]=1;
	for(int re i=1;i<(1<<bit-1);++i)w[bit][i]=mul(w[bit][i-1],wn);
	for(int re i=bit-1;i;--i)
	for(int re j=0;j<(1<<i-1);++j)w[i][j]=w[i+1][j<<1];
}
inline void NTT(Poly &A,int len,int typ){
	for(int re i=0;i<len;++i)if(i<r[i])std::swap(A[i],A[r[i]]);
	for(int re i=1,t=1;i<len;i<<=1,++t)
	for(int re j=0;j<len;j+=i<<1)
	for(int re k=0;k<i;++k){
		int x=A[j+k],y=mul(A[j+k+i],w[t][k]);
		A[j+k]=add(x,y),A[j+k+i]=dec(x,y);
	}
	if(typ==-1){
		std::reverse(A.begin()+1,A.begin()+len);
		for(int re i=0,inv=power(len,mod-2);i<len;++i)A[i]=mul(A[i],inv);
	}
}
inline void init_rev(int len){
	for(int re i=0;i<len;++i)r[i]=r[i>>1]>>1|((i&1)?len>>1:0);
}

inline Poly Inv(cs Poly &a){
	Poly c,b(1,power(a[0],mod-2));int lim=a.size();
	for(int re l=4;(l>>2)<lim;l<<=1){
		init_rev(l);
		c.resize(l>>1);for(int re i=0;i<(l>>1);++i)c[i]=(i<lim)?a[i]:0;
		c.resize(l);NTT(c,l,1);
		b.resize(l);NTT(b,l,1);
		for(int re i=0;i<l;++i)b[i]=mul(b[i],dec(2,mul(b[i],c[i])));
		NTT(b,l,-1);b.resize(l>>1);
	}b.resize(lim);
	return b;
}

int n;
Poly f,g;

signed main(){
#ifdef zxyoi
//	freopen("note.in","r",stdin);
#endif
	init_NTT();init_inv();
	std::cin>>n;
	g.resize(n+1);
	for(int re i=0;i<=n;++i)g[i]=power(2,(ll)i*(i-1)>>1,ifac[i]);
	f=Inv(g);
	if(n>=1)cout<<"1\n";if(n>=2)cout<<"-1\n";
	for(int re i=3;i<=n;++i){
		int val=dec(0,mul(fac[i],f[i]));
		val=power(val,mod-2,power(2,(ll)i*(i-3)>>1,fac[i-1]));
		cout<<val<<"\n";
	}
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值