C++语言实现最小生成树算法(Minimum Spanning Tree)

C++语言实现最小生成树算法(Minimum Spanning Tree)

在C++中实现最小生成树(Minimum Spanning Tree, MST)算法,同样可以使用Kruskal算法或Prim算法。以下是使用Kruskal算法实现MST的示例代码。

Kruskal算法

Kruskal算法的主要思想是将所有边按照权重从小到大排序,然后逐一添加到生成树中,如果添加一条边会形成环,则跳过这条边,直到生成树中包含所有顶点。

示例代码:
#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

// 边结构体
struct Edge {
    int from, to, weight;
};

// 并查集类
class UnionFind {
public:
    UnionFind(int n) {
        parent.resize(n);
        rank.resize(n);
        for (int i = 0; i < n; ++i) {
            parent[i] = i;
            rank[i] = 0;
        }
    }

    int Find(int x) {
        if (parent[x] != x) {
            parent[x] = Find(parent[x]);
        }
        return parent[x];
    }

    void Union(int x, int y) {
        int rootX = Find(x);
        int rootY = Find(y);
        if (rootX != rootY) {
            if (rank[rootX] > rank[rootY]) {
                parent[rootY] = rootX;
            } else if (rank[rootX] < rank[rootY]) {
                parent[rootX] = rootY;
            } else {
                parent[rootY] = rootX;
                rank[rootX]++;
            }
        }
    }

private:
    vector<int> parent;
    vector<int> rank;
};

// Kruskal算法
vector<Edge> Kruskal(vector<Edge>& edges, int n) {
    sort(edges.begin(), edges.end(), [](Edge a, Edge b) {
        return a.weight < b.weight;
    });

    UnionFind uf(n);
    vector<Edge> mst;
    for (auto& edge : edges) {
        if (uf.Find(edge.from) != uf.Find(edge.to)) {
            uf.Union(edge.from, edge.to);
            mst.push_back(edge);
        }
    }
    return mst;
}

int main() {
    vector<Edge> edges = {
        {0, 1, 10},
        {0, 2, 6},
        {0, 3, 5},
        {1, 3, 15},
        {2, 3, 4}
    };
    int n = 4; // 节点数

    vector<Edge> mst = Kruskal(edges, n);
    cout << "Minimum Spanning Tree:" << endl;
    for (auto& edge : mst) {
        cout << "from " << edge.from << " to " << edge.to << ", weight: " << edge.weight << endl;
    }

    return 0;
}

代码解释:

  1. Edge结构体:表示图中的一条边,包含起点、终点和权重。
  2. UnionFind类:实现并查集数据结构,用于检测环。
  3. UnionFind构造函数:初始化并查集。
  4. Find方法:查找并查集中的代表元。
  5. Union方法:合并两个集合。
  6. Kruskal函数:实现Kruskal算法,首先对边按权重排序,然后逐一添加边到生成树中。
  7. main函数:示例数据,调用Kruskal函数并输出结果。

这个示例代码展示了如何在C++语言中实现Kruskal算法来求解最小生成树。你可以根据需要调整输入的边和节点数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

亚丁号

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值