每天坚持刷题!!!
今天继续死磕动态规划,昨个发现简单题目没啥用,今天开始死磕难题
直接上题
leetcode 32 最长有效括号
题目描述:
给定一个只包含 ‘(’ 和 ‘)’ 的字符串,找出最长的包含有效括号的子串的长度。
题目分析:
1.讲真这个用栈做是挺简单的,但是既然是死磕动态规划而且在leetcode上也有动态规划的标签,那就要拼死也要用动态规划来做。
2. 重点还是找状态转移方程,那么如何定义暂存的数组就成了最大问题,刚开始觉得可以定义成到第i个字符时的最大有效子串长度,后来发现找不到合理的状态转移方程。
3. 所以把数组D[i]定义为以第i个字符结尾的最大有效子串长度,并额外用一个max_length来跟踪整体最大有效子串长度即可。那么来具体分析下状态转移的过程:a. 因为只有’(‘和’)’两种字符,而且又要连续的有效子串,因此如果第i个字符是’)’而且第i-1个字符是’(‘就构成了一个有效子串,再加上D[i-2]即可(如果存在的话); b. 如果第i个字符和第i-1个字符无法匹配的话,则检查第i - D[i-1]-1个字符是否和第i个字符匹配,不匹配D[i]为零,匹配则为D[i - 1] + 2 + D[i - D[id - 1] - 2]
是不是有点绕,我们举个栗子:
F = ‘)(())’, MAX = 0
D[0] = 0, MAX = 0
D[1] = 0, MAX = 0 因为F[0]和F[1]不匹配
D[2] = 0, MAX = 0 因为F[1]和F[2]不匹配
D[3] = 2, MAX = 2 因为F[2]和F[3]匹配
D[4] = 4, MAX = 4 因为F[4]和F[3]不匹配,但是F[4]和F[4 - D[3] - 1] = F[1]匹配
def longestValidParentheses(s):
"""
:type s: str
:rtype: int
"""
if not s or len(s) == 1:
return 0
max_length = 0
temp = [0 for _ in xrange(len(s))]
for id in xrange(1, len(s)):
if s[id - 1] == '(' and s[id] == ')':
if id - 2 >= 0:
temp[id] = temp[id - 2] + 2
else:
temp[id] = 2
else:
if id - temp[id - 1] - 1 >= 0:
if s[id - temp[id - 1] - 1] == '(' and s[id] == ')':
if id - temp[id - 1] - 2 >= 0:
temp[id] = temp[id - 1] + 2 + temp[id - temp[id - 1] - 2]
else:
temp[id] = temp[id - 1] + 2
else:
temp[id] = 0
else:
temp[id] = 0
if temp[id] > max_length:
max_length = temp[id]
return max_length
欢迎大家批评指正!