数据结构--算法的复杂度

本文探讨了算法效率度量的两种方法:事后统计和事前分析,重点介绍了时间复杂度和空间复杂度的概念,以及如何通过大O表示法简化分析。文章举例说明了计算时间复杂度的练习题,并讨论了空间复杂度的计算和相关示例。
摘要由CSDN通过智能技术生成

算法效率的度量方法

        事后统计方法

        这种方法主要是通过设计好的测试程序和数据,利用计算机计时器对不同算法编制的程序的运行时间进行比较,从而确定算法效率的高低。

        但是这种方法有很大的缺陷:1、必须依据算法事先编制好程序,这通常需要花费大量的时间和精力。如果编制出来发现它根本是很糟糕的算法,不是竹篮打水一场空吗?2、时间的比较依赖计算机硬件和软件等环境因素,有时会掩盖算法本身的优劣。3、算法的测试数据设计困难,并且程序的运行时间往往还与测试数据的规模有很大关系,效率高的算法在小的测试数据面前往往得不到体现。

        由于存在各种缺陷,我们考虑不予采纳。

        事前分析估算方法

        在计算机程序编制前,依据统计方法对算法进行估算。

        一个用高级程序语言编写的程序在计算机上运行时所消耗的时间取决于下列因素:

1、算法采用的策略、方法(算法好坏的根本)。

2、编译产生的代码质量(有软件来支持)。

3、问题的输入规模(输入量的多少)。

4、机器指令的执行速度(看硬件性能)。

 算法的复杂度

        算法在编写成可执行程序后,运行是需要耗费时间资源和空间(内存)资源。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。

        时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的储存容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

        时间复杂度

        时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所消耗的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们要把每个算法都上机测试的话就很麻烦所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比,算法中的基本操作的执行次数,为算法的时间复杂度。

// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{
	int count = 0;
	for (int i = 0; i < N; ++i)
	{
		for (int j = 0; j < N; ++j)
		{
			++count;
		}
	}
	for (int k = 0; k < 2 * N; ++k)
	{
		++count;
	}
	int M = 10;
	while (M--)
	{
		++count;
	}
    printf("%d\n", count);
}

Func1 执行的基本操作次数 :
                                                F(N) = N^2 + 2*N + 10

N=10  ---> F(N) = 130

N=100 --->  F(N) = 10210

N= 1000 --->  F(N) = 1002010

        实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法。

        大O的渐进表示法

        大O符号:是用于描述函数渐进行为的数学符号。

推导大O阶的方法:

1、用常数1取代运行时间中的所有常数。

2、在修改后的运行次数函数中,只保留最高阶项。

3、如果最高阶项存在且不是1,则去掉与这个项数相乘的常数。得到的结果就是大O阶。

        由此我们可以算出,Func1的时间复杂度为O(N^2)

        N = 10 --->F(N) = 100
        N = 100 --->F(N) = 10000
        N = 1000 --->F(N) = 1000000

        我们可以看出最高次项的指数大的,函数随着n的增长,结果也会变得增长特别快

        通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。另外有些算法的时间复杂度存在最好、平均和最坏情况:

最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)

例如:在一个长度为N数组中搜索一个数据x
最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到

在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)。

        常见的时间复杂度:

练习题:

     1、   

// 计算Func2的时间复杂度?
void Func2(int N)
{
	int count = 0;
	for (int k = 0; k < 2 * N; ++k)
	{
		++count;		//2*N
	}
	int M = 10;
	while (M--)
	{
		++count;		//10
	}
	printf("%d\n", count);
}//	时间复杂度为O(N)

2、

// 计算Func3的时间复杂度?
void Func3(int N, int M)
{
	int count = 0;
	for (int k = 0; k < M; ++k)
	{
		++count;		//M
	}
	for (int k = 0; k < N; ++k)
	{
		++count;		//N
	}
	printf("%d\n", count);
}//时间复杂度为 O(M+N)

3、

// 计算Func4的时间复杂度?
void Func4(int N)
{
	int count = 0;
	for (int k = 0; k < 100; ++k)
	{
		++count;		//100
	}
	printf("%d\n", count);
}//时间复杂度为 O(1)

4、

// 计算strchr的时间复杂度?
const char* strchr(const char* str, int character);
//strchr函数的作用是返回指向 C 字符串 str 中第一个出现的字符的指针。
//计算时间复杂度我们一般计算最坏情况,即将字符串遍历了一遍
//时间复杂度为O(N)

5、

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{
	assert(a);
	for (size_t end = n; end > 0; --end)
	{
		int exchange = 0;
		for (size_t i = 1; i < end; ++i)
		{
			if (a[i - 1] > a[i])
			{
				Swap(&a[i - 1], &a[i]);
				exchange = 1;
			}
		}
		if (exchange == 0)
			break;
	}
}//冒泡排序的运行次数其实就是等差数列的前n项和
//Sn = (1+n)n/2		因此时间复杂度为O(n^2)

6、

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{
	assert(a);
	int begin = 0;
	int end = n - 1;
	// [begin, end]:begin和end是左闭右闭区间,因此有=号
	while (begin <= end)
	{
		int mid = begin + ((end - begin) >> 1);
		if (a[mid] < x)
			begin = mid + 1;
		else if (a[mid] > x)
			end = mid - 1;
		else
			return mid;
	}
	return -1;
}//二分查找本质上就是一直除2的过程
//时间复杂度为O(log n)

7、

// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{
	if (0 == N)
		return 1;
	return Fac(N - 1) * N;
}//时间复杂度为O(N)

8、

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{
	if (N < 3)
		return 1;
	return Fib(N - 1) + Fib(N - 2);
}//斐波那契数列是一个根节点一分为二的过程,当n无穷大时
	//时间复杂度为O(N^2)

空间复杂度

        空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度。空间复杂度不是程序占了多少bytes的空间,因为这个也没太大的意义,所以空间复杂度算的是变量的个数。空间复杂度计算的规则基本和时间复杂度类似,也是用大O渐进表示法。

        注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。

练习题:

1、

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
	assert(a);
	for (size_t end = n; end > 0; --end)
	{
		int exchange = 0;		//1
		for (size_t i = 1; i < end; ++i)	//1
		{
			if (a[i - 1] > a[i])
			{
				Swap(&a[i - 1], &a[i]);
				exchange = 1;
			}
		}
		if (exchange == 0)
			break;
	}
}//使用了常数个额外空间,空间复杂度为O(1)

2、

// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
	if (n == 0)
		return NULL;
	long long* fibArray = (long long*)malloc((n + 1) * sizeof(long long));
	fibArray[0] = 0;
	fibArray[1] = 1;
	for (int i = 2; i <= n; ++i)
	{
		fibArray[i] = fibArray[i - 1] + fibArray[i - 2];
	}
	return fibArray;
}//一个函数中开辟了一个空间,在n次递归函数中就开辟了n个空间
//空间复杂度为O(n)

3、

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
	if (N == 0)
		return 1;
	return Fac(N - 1) * N;
}//递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值