大数据-Spark(一)
目录
Spark 概念
Apache Spark™ is a unified analytics engine for large-scale data processing.
spark是针对于大规模数据处理的统一分析引擎。
spark是在Hadoop基础上的改进,是UC Berkeley AMP lab所开源的类Hadoop MapReduce的通用的并行计算框架,Spark基于map reduce算法实现的分布式计算,拥有Hadoop MapReduce所具有的优点;但不同于MapReduce的是Job中间输出和结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的map reduce的算法。
spark是基于内存计算框架,计算速度非常之快,但是它仅仅只是涉及到计算,并没有涉及到数据的存储,后期需要使用spark对接外部的数据源,比如hdfs。
Spark 特性
速度快
- 运行速度提高100倍
Apache Spark使用最先进的DAG调度程序,查询优化程序和物理执行引擎,实现批量和流式数据的高性能。
- spark比mapreduce快的2个主要原因
① 基于内存
- mapreduce任务后期再计算的时候,每一个job的输出结果会落地到磁盘,后续有其他的job需要依赖于前面job的输出结果,这个时候就需要进行大量的磁盘io操作。性能就比较低。
- spark任务后期再计算的时候,job的输出结果可以保存在内存中,后续有其他的job需要依赖于前面job的输出结果,这个时候就直接从内存中获取得到,避免了磁盘io操作,性能比较高。
对于spark程序和mapreduce程序都会产生shuffle阶段,在shuffle阶段中它们产生的数据都会落地到磁盘。
② 进程与线程
- mapreduce任务以进程的方式运行在yarn集群中,比如程序中有100个MapTask,一个task就需要一个进程,这些task要运行就需要开启100个进程。
- spark任务以线程的方式运行在进程中,比如程序中有100个MapTask,后期一个task就对应一个线程,这里就不在是进程,这些task需要运行,这里可以极端一点:只需要开启1个进程,在这个进程中启动100个线程就可以了。进程中可以启动很多个线程,而开启一个进程与开启一个线程需要的时间和调度代价是不一样。 开启一个进程需要的时间远远大于开启一个线程。
易用性
可以快速去编写spark程序通过 java/scala/python/R/SQL等不同语言。
通用性
spark框架不再是一个简单的框架,可以把spark理解成一个生态系统,它内部是包含了很多模块,基于不同的应用场景可以选择对应的模块去使用。
- sparksql 通过sql去开发spark程序做一些离线分析
- sparkStreaming 主要是用来解决实时计算的这种场景
- Mlib 封装了一些机器学习的算法库
- Graphx 图计算
兼容性
spark程序就是一个计算逻辑程序,这个任务要运行就需要计算资源(内存、cpu、磁盘),哪里可以给当前这个任务提供计算资源,就可以把spark程序提交到哪里去运行。
- standAlone 是spark自带的独立运行模式,整个任务的资源分配由spark集群的老大Master负责。
- yarn 可以把spark程序提交到yarn中运行,整个任务的资源分配由yarn中的老大ResourceManager负责。
- mesos 它也是apache开源的一个类似于yarn的资源调度平台。
Spark 架构
① Driver 它会执行客户端写好的main方法,它会构建一个名叫SparkContext对象,该对象是所有spark程序的执行入口。
② Application 就是一个spark的应用程序,它是包含了客户端的代码和任务运行的资源信息。
③ ClusterManager 它是给程序提供计算资源的外部服务。
④ Master 它是整个spark集群的主节点,负责任务资源的分配。
⑤ Worker 它是整个spark集群的从节点,负责任务计算的节点。
⑥ Executor 它是一个进程,它会在worker节点启动该进程(计算资源)。
⑦ Task spark任务是以task线程的方式运行在worker节点对应的executor进程中。
Spark 集群安装部署
前置条件搭建好zookeeper集群
1.下载安装包 https://archive.apache.org/dist/spark/spark-2.3.3/spark-2.3.3-bin-hadoop2.7.tgz
2.规划安装目录
/hlbdx/install
3.上传安装包到服务器
4.解压安装包到指定的安装目录
tar -zxvf spark-2.3.3-bin-hadoop2.7.tgz -C /hlbdx/install
5.修改配置文件
进入到spark的安装目录下对应的conf文件夹
- vim spark-env.sh
mv spark-env.sh.template spark-env.sh
vim spark-env.sh
#配置java的环境变量
export JAVA_HOME=/hlbdx/install/jdk1.8.0_141
#配置zk相关信息
export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zookeeper.url=node01:2181,node02:2181,node03:2181 -Dspark.deploy.zookeeper.dir=/spark"
-
vim slaves ( mv slaves.template slaves)
mv slaves.template slaves
vim slaves
#指定spark集群的worker节点
node02
node03
6.分发安装目录到其他机器
scp -r /hlbdx/install/spark-2.3.3-bin-hadoop2.7 node02:/hlbdx/install
scp -r /hlbdx/install/spark-2.3.3-bin-hadoop2.7 node03:/hlbdx/install
7.三节点配置spark环境变量
sudo vim /etc/profile
export SPARK_HOME=/kkb/install/spark-2.3.3-bin-hadoop2.7
export PATH=$PATH:$SPARK_HOME/bin:$SPARK_HOME/sbin
source /etc/profile
Spark集群的启动和停止
启动
1、先启动zk
2、启动spark集群
-
可以在任意一台服务器来执行(条件:需要任意2台机器之间实现ssh免密登录)
- $SPARK_HOME/sbin/start-all.sh
- 在哪里启动这个脚本,就在当前该机器启动一个Master进程
- 整个集群的worker进程的启动由slaves文件
-
后期可以在其他机器单独在启动master
- $SPARK_HOME/sbin/start-master.sh
(1) 如何恢复到上一次活着master挂掉之前的状态?
在高可用模式下,整个spark集群就有很多个master,其中只有一个master被zk选举成活着的master,其他的多个master都处于standby,同时把整个spark集群的元数据信息通过zk中节点进行保存。
后期如果活着的master挂掉。首先zk会感知到活着的master挂掉,下面开始在多个处于standby中的master进行选举,再次产生一个活着的master,这个活着的master会读取保存在zk节点中的spark集群元数据信息,恢复到上一次master的状态。整个过程在恢复的时候经历过了很多个不同的阶段,每个阶段都需要一定时间,最终恢复到上个活着的master的转态,整个恢复过程一般需要1-2分钟。
(2) 在master的恢复阶段对任务的影响?
a)对已经运行的任务是没有任何影响。
由于该任务正在运行,说明它已经拿到了计算资源,这个时候就不需要master。
b) 对即将要提交的任务是有影响
由于该任务需要有计算资源,这个时候会找活着的master去申请计算资源,由于没有一个活着的master,该任务是获取不到计算资源,也就是任务无法运行。
停止
- 在处于active Master主节点执行 $SPARK_HOME/sbin/stop-all.sh
- 在处于standBy Master主节点执行 $SPARK_HOME/sbin/stop-master.sh
spark集群的web管理界面
当启动好spark集群之后,可以访问这样一个地址
http://master主机名:8080
可以通过这个web界面观察到很多信息
- 整个spark集群的详细信息
- 整个spark集群总的资源信息
- 整个spark集群已经使用的资源信息
- 整个spark集群还剩的资源信息
- 整个spark集群正在运行的任务信息
- 整个spark集群已经完成的任务信息
初识 Spark程序
普通模式提交 (指定活着的master地址)
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://node01:7077 \
--executor-memory 1G \
--total-executor-cores 2 \
examples/jars/spark-examples_2.11-2.3.3.jar \
10
####参数说明
--class:指定包含main方法的主类
--master:指定spark集群master地址
--executor-memory:指定任务在运行的时候需要的每一个executor内存大小
--total-executor-cores: 指定任务在运行的时候需要总的cpu核数
高可用模式提交 (集群有很多个master)
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://node01:7077,node02:7077,node03:7077 \
--executor-memory 1G \
--total-executor-cores 2 \
examples/jars/spark-examples_2.11-2.3.3.jar \
10
spark集群中有很多个master,并不知道哪一个master是活着的master,即使你知道哪一个master是活着的master,它也有可能下一秒就挂掉,这里就可以把所有master都罗列出来
--master spark://node01:7077,node02:7077,node03:7077
后期程序会轮训整个master列表,最终找到活着的master,然后向它申请计算资源,最后运行程序。
Spark-shell使用
运行spark-shell --master local[N] 读取本地文件进行单词统计
--master local[N]
- local 表示程序在本地进行计算,跟spark集群目前没有任何关系
- N 它是一个正整数,表示使用N个线程参与任务计算
- local[N] 表示本地采用N个线程计算任务
spark-shell --master local[2]
- 默认会产生一个SparkSubmit进程
sc.textFile("file:///home/hadoop/words.txt").flatMap(x=>x.split(" ")).map(x=>(x,1)).reduceByKey((x,y)=>x+y).collect
sc.textFile("file:///home/hadoop/words.txt").flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).collect
运行spark-shell --master local[N] 读取HDFS上文件进行单词统计
Spark整合HDFS
在node01上修改配置文件spark-env.sh
vim spark-env.sh
export HADOOP_CONF_DIR=/kkb/install/hadoop-2.6.0-cdh5.14.2/etc/hadoop
分发到其他节点
sudo scp spark-env.sh node02:/kkb/install/spark-2.3.3-bin-hadoop2.7/conf
sudo scp spark-env.sh node03:/kkb/install/spark-2.3.3-bin-hadoop2.7/conf
spark-shell --master local[2]
sc.textFile("/words.txt").flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).collect
sc.textFile("hdfs://node01:8020/words.txt").flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).collect
运行spark-shell 指定集群中活着master 读取HDFS上文件进行单词统计
spark-shell --master spark://node01:7077 --executor-memory 1g --total-executor-cores 4
--master spark://node01:7077 #指定活着的master地址
--executor-memory 1g #指定每一个executor进程的内存大小
--total-executor-cores 4 #指定总的executor进程cpu核数
sc.textFile("hdfs://node01:8020/words.txt").flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).collect
//实现读取hdfs上文件之后,需要把计算的结果保存到hdfs上
sc.textFile("/words.txt").flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).saveAsTextFile("/out")
Spark程序开发
构建maven工程,添加pom依赖
<dependencies>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.3.3</version>
</dependency>
</dependencies>
<build>
<sourceDirectory>src/main/scala</sourceDirectory>
<testSourceDirectory>src/test/scala</testSourceDirectory>
<plugins>
<plugin>
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<version>3.2.2</version>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
<configuration>
<args>
<arg>-dependencyfile</arg>
<arg>${project.build.directory}/.scala_dependencies</arg>
</args>
</configuration>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>2.4.3</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<filters>
<filter>
<artifact>*:*</artifact>
<excludes>
<exclude>META-INF/*.SF</exclude>
<exclude>META-INF/*.DSA</exclude>
<exclude>META-INF/*.RSA</exclude>
</excludes>
</filter>
</filters>
<transformers>
<transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
<mainClass></mainClass>
</transformer>
</transformers>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
利用scala语言开发spark程序实现单词统计--本地运行
package com.kaikeba
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
//todo: 利用scala语言开发spark程序实现单词统计
object WordCount {
def main(args: Array[String]): Unit = {
//1、构建sparkConf对象 设置application名称和master地址
val sparkConf: SparkConf = new SparkConf().setAppName("WordCount").setMaster("local[2]")
//2、构建sparkContext对象,该对象非常重要,它是所有spark程序的执行入口
// 它内部会构建 DAGScheduler和 TaskScheduler 对象
val sc = new SparkContext(sparkConf)
//设置日志输出级别
sc.setLogLevel("warn")
//3、读取数据文件
val data: RDD[String] = sc.textFile("E:\\words.txt")
//4、 切分每一行,获取所有单词
val words: RDD[String] = data.flatMap(x=>x.split(" "))
//5、每个单词计为1
val wordAndOne: RDD[(String, Int)] = words.map(x => (x,1))
//6、相同单词出现的1累加
val result: RDD[(String, Int)] = wordAndOne.reduceByKey((x,y)=>x+y)
//按照单词出现的次数降序排列 第二个参数默认是true表示升序,设置为false表示降序
val sortedRDD: RDD[(String, Int)] = result.sortBy( x=> x._2,false)
//7、收集数据打印
val finalResult: Array[(String, Int)] = sortedRDD.collect()
finalResult.foreach(println)
//8、关闭sc
sc.stop()
}
}
利用scala语言开发spark程序实现单词统计--集群运行
package com.kaikeba
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
//todo: 利用scala语言开发spark程序实现单词统计
object WordCountOnSpark {
def main(args: Array[String]): Unit = {
//1、构建sparkConf对象 设置application名称
val sparkConf: SparkConf = new SparkConf().setAppName("WordCountOnSpark")
//2、构建sparkContext对象,该对象非常重要,它是所有spark程序的执行入口
// 它内部会构建 DAGScheduler和 TaskScheduler 对象
val sc = new SparkContext(sparkConf)
//设置日志输出级别
sc.setLogLevel("warn")
//3、读取数据文件
val data: RDD[String] = sc.textFile(args(0))
//4、 切分每一行,获取所有单词
val words: RDD[String] = data.flatMap(x=>x.split(" "))
//5、每个单词计为1
val wordAndOne: RDD[(String, Int)] = words.map(x => (x,1))
//6、相同单词出现的1累加
val result: RDD[(String, Int)] = wordAndOne.reduceByKey((x,y)=>x+y)
//7、把计算结果保存在hdfs上
result.saveAsTextFile(args(1))
//8、关闭sc
sc.stop()
}
}
打成jar包提交到集群中运行
spark-submit \
--master spark://node01:7077,node02:7077 \
--class com.kaikeba.WordCountOnSpark \
--executor-memory 1g \
--total-executor-cores 4 \
original-spark_class04-1.0-SNAPSHOT.jar \
/words.txt /out
利用java语言开发spark程序实现单词统计--本地运行
package com.kaikeba;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import scala.Tuple2;
import java.util.Arrays;
import java.util.Iterator;
import java.util.List;
//todo: 利用java语言开发spark的单词统计程序
public class JavaWordCount {
public static void main(String[] args) {
//1、创建SparkConf对象
SparkConf sparkConf = new SparkConf().setAppName("JavaWordCount").setMaster("local[2]");
//2、构建JavaSparkContext对象
JavaSparkContext jsc = new JavaSparkContext(sparkConf);
//3、读取数据文件
JavaRDD<String> data = jsc.textFile("E:\\words.txt");
//4、切分每一行获取所有的单词 scala: data.flatMap(x=>x.split(" "))
JavaRDD<String> wordsJavaRDD = data.flatMap(new FlatMapFunction<String, String>() {
public Iterator<String> call(String line) throws Exception {
String[] words = line.split(" ");
return Arrays.asList(words).iterator();
}
});
//5、每个单词计为1 scala: wordsJavaRDD.map(x=>(x,1))
JavaPairRDD<String, Integer> wordAndOne = wordsJavaRDD.mapToPair(new PairFunction<String, String, Integer>() {
public Tuple2<String, Integer> call(String word) throws Exception {
return new Tuple2<String, Integer>(word, 1);
}
});
//6、相同单词出现的1累加 scala: wordAndOne.reduceByKey((x,y)=>x+y)
JavaPairRDD<String, Integer> result = wordAndOne.reduceByKey(new Function2<Integer, Integer, Integer>() {
public Integer call(Integer v1, Integer v2) throws Exception {
return v1 + v2;
}
});
//按照单词出现的次数降序 (单词,次数) -->(次数,单词).sortByKey----> (单词,次数)
JavaPairRDD<Integer, String> reverseJavaRDD = result.mapToPair(new PairFunction<Tuple2<String, Integer>, Integer, String>() {
public Tuple2<Integer, String> call(Tuple2<String, Integer> t) throws Exception {
return new Tuple2<Integer, String>(t._2, t._1);
}
});
JavaPairRDD<String, Integer> sortedRDD = reverseJavaRDD.sortByKey(false).mapToPair(new PairFunction<Tuple2<Integer, String>, String, Integer>() {
public Tuple2<String, Integer> call(Tuple2<Integer, String> t) throws Exception {
return new Tuple2<String, Integer>(t._2, t._1);
}
});
//7、收集打印
List<Tuple2<String, Integer>> finalResult = sortedRDD.collect();
for (Tuple2<String, Integer> t : finalResult) {
System.out.println("单词:"+t._1 +"\t次数:"+t._2);
}
jsc.stop();
}
}
此博文仅供学习参考,如有错误欢迎指正。
上一篇《大数据-scala(十三)》
下一篇《大数据-Spark(二)》
希望对大数据相关技术感兴趣的友友们关注一下,大家可以一起交流学习哦~