Yue9812
码龄7年
求更新 关注
提问 私信
  • 博客:39,478
    社区:2,208
    41,686
    总访问量
  • 10
    原创
  • 53
    粉丝
  • 8
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:陕西省
加入CSDN时间: 2017-12-11

个人简介:Be yourself

博客简介:

zy1337602899的博客

查看详细资料
个人成就
  • 获得29次点赞
  • 内容获得16次评论
  • 获得136次收藏
  • 代码片获得102次分享
创作历程
  • 10篇
    2018年
成就勋章
TA的专栏
  • 吴恩达机器学习作业练习
    4篇

TA关注的专栏 2

TA关注的收藏夹 0

TA关注的社区 2

TA参与的活动 0

兴趣领域 设置
  • 人工智能
    计算机视觉pytorch
创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

475人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

吴恩达机器学习第五次作业(python 实现):偏差与方差

偏差与方差数据在这先放上整体代码,后面对于具体函数有相应解释import numpy as npimport matplotlib.pyplot as pltimport timefrom scipy.io import loadmatimport scipy.optimize as optdef loadfile(path): data=loadmat(path)...
原创
发布博客 2018.12.31 ·
1386 阅读 ·
2 点赞 ·
3 评论 ·
7 收藏

吴恩达机器学习第四次作业(python实现):BP神经网络

bp神经网络数据放在这:import numpy as npfrom scipy.io import loadmatfrom sklearn.metrics import classification_reportimport matplotlib.pyplot as pltimport scipy.optimize as optimport timedef raw_data...
原创
发布博客 2018.12.27 ·
3989 阅读 ·
5 点赞 ·
4 评论 ·
32 收藏

吴恩达机器学习第三次作业(python实现):多分类与神经网络

多分类数据在这import numpy as npimport matplotlib.pyplot as pltfrom scipy.io import loadmatfrom scipy.optimize import minimizefrom sklearn.metrics import classification_report"""每个训练样本是一个20x
原创
发布博客 2018.12.23 ·
3791 阅读 ·
2 点赞 ·
3 评论 ·
16 收藏

用python中的matplotlib绘制方程图像

绘制方程x2+y2=1x^{2}+y^{2}=1x2+y2=1import numpy as npimport matplotlib.pyplot as pltdef main(): x=np.arange(-2,2,0.01) y=np.arange(-2,2,0.01) x,y=np.meshgrid(x,y) z=np.power(x,2)+np.p...
原创
发布博客 2018.12.22 ·
11812 阅读 ·
6 点赞 ·
0 评论 ·
17 收藏

关于sklearn.metrics中的classification_report结果说明

precision(P):精确率,针对预测结果,它表示的是预测为正的样本中有多少是真正的样本。recall(R):召回率,针对原来的样本,它表示的是样本中的正例有多少被预测正确了。f1-score(F1):F1=P∗R∗2P+R\frac{P*R*2}{P+R}P+RP∗R∗2​F1的值等于1时最佳,等于0时最差。可以用基本不等式证明出F1≤1\leq1≤1。...
原创
发布博客 2018.12.20 ·
8259 阅读 ·
3 点赞 ·
0 评论 ·
13 收藏

记录pandas中DataFrame的用法

data=pd.DataFrame([[1,2,3],[4,5,6]],columns=['a','b','c'],index=[1,2]) print(data) print(type(data.a)) print(type(data['a'])) 输出如下: a b c 1 1 2 3 2 4 5 6 <class 'pand...
原创
发布博客 2018.12.20 ·
330 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

关于numpy中的矩阵细节

关于一维矩阵与二维矩阵 a=np.array([1,2]) b=np.array([[1],[2]]) print(a*b) print(a.dot(b)) 输出如下 [[1 2] [2 4]] [5] a=np.array([1,2]) b=np.array([[1,2]]) c=np.array([[1],[2]]) ...
原创
发布博客 2018.12.20 ·
480 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

吴恩达机器学习第二次作业(python实现):逻辑回归

数据在这import matplotlib.pyplot as pltimport numpy as npimport scipy.optimize as opt#找最大最小值,设置横纵坐标def maxmin(x): sx=sorted(x) print(sx[0],sx[-1])#读取数据def prepareData(filename): file ...
原创
发布博客 2018.12.03 ·
5843 阅读 ·
7 点赞 ·
6 评论 ·
33 收藏

吴恩达机器学习第一次作业(python实现):线性回归

数据放这里import matplotlib.pyplot as pltimport numpy as np#从.txt文件中读取数据def loadData(flieName): file = open(flieName, 'r') #定义两个空list,存放文件中的数据 x = [] y = [] for line in file: ...
原创
发布博客 2018.11.29 ·
3224 阅读 ·
4 点赞 ·
0 评论 ·
23 收藏

初学记录Numpy的一些矩阵操作

import numpy as np a=np.array([[1,2,3], [4,5,6]]) #生成一个【1,2,3 4,5,6】的矩阵 b=np.zeros((2,2),int) #生成一个全0的,2x2的,元素为整型的矩阵 c=np.ones((2,4),int) #生成一个2x4的全1的,元素...
原创
发布博客 2018.11.26 ·
359 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏