用excel和python做数据分析的优缺点

进入信息时代,一个显著的特点就是信息量增大,数据量增大,面对这些数据,我们必须加以分析,才会发现其中的价值,换句话说,我们需要读懂数据,以及数据背后的意义和价值。那么分析数据的方法有很多了,古代数据量少,我们用纸笔,用算盘,现在不一样了,第一数据量大,第二,数据维度也增多了,所以古老的方法肯定不适用了,而且现在数据的载体也变了,几乎都在计算机上,各个计算机连在一起,形成互联网,数据中心等,所以我们分析数据的方式也发生了变化,基本都在计算机,靠软件进行,最常见的莫过于excel了,近几年,python突然的火爆也为数据分析注入新鲜血液,python的易学甚至使得python成为金融领域的首先工作语言,那么新人总会问,到底应该学哪个呢,下面就来分析一下。

Excel在数据分析领域用的还是比较多的,比例基本在70%或者以上,现在python非常火,大家都跟风似的觉得python天下无敌,但事实上是这样吗?

我是做python的,用编程做数据分析的好处是可以把处理过程记录下来,如果数据变化,统计图表也会自动跟着变,就是说它可以做成一个报表系统或者叫平台,想看图直接登到平台就看到了,避免重复劳动,但是不好的地方在于,如果想要修改分析逻辑,就得修改代码,这样就要求分析人员要有代码功底。还有个好处是python可以处理大数据,这个是比较大的优势,如果是那种tb级的数据,用python比较好,再一个就是数据处理比较复杂的时候,python的优势就体现了,它可以做非常细致的数据处理,清洗等工作。

然后Excel的好处是,当我需要改分析逻辑时(特别是像数据透视表),我可以很快速的修改,想怎么改,怎么改,修改成本低。第二它是图形化的界面,数据字段或者叫维度我们一眼就能看到,可以随时分析各个维度,而python因为是编程语言,如果你想看维度,你需要执行一个命令,如果对数据不是很熟悉的话,这样就不太方便,但同时我做报表的话重复劳动要多一些。还有就是如果对数据做的处理比较复杂,用excel就不太合适,比如做数据清洗,数据修复等,还有就是数据量可能不能太大。

所以,总得来说,python和Excel是各有优缺点的,用哪个看需求,如果是数据量大,数据格式不好,不经常改分析逻辑的用python,如果是数据格式简单,数据量小,需要多维度分析的,用excel要好一些。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

羸弱的穷酸书生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值