提醒自己少走弯路的十条忠告

少走弯路的10条忠告

  如何在涉世之初少走弯路,有一个好的开端,开始一番成功的事业?以下是一些先行者积累的10条有益的涉世忠告。好好地遵循、把握这些忠告和建议吧,比起所学的课堂课程来,它毫不逊色!

1.1、买个闹钟,以便按时叫醒你

  贪睡和不守时,都将成为你工作和事业上的绊脚石,任何时候都一样。不仅要学会准时,更要学会提前。就如你坐车去某地,沿途的风景很美,你忍不住下车看一看,后来虽然你还是赶到了某地,却不是准时到达。“闹钟”只是一种简单的标志和提示,真正灵活、实用的时间,掌握在每个人的心中。  

1.2、如果你不喜欢现在的工作,要么辞职不干,要么就闭嘴不言

  初出茅庐,往往眼高手低,心高气傲,大事做不了,小事不愿做。不要养成挑三拣四的习惯。不要雨天烦打伞,不带伞又怕淋雨,处处表现出不满的情绪。记住,不做则已,要做就要做好。

1.3、每个人都有孤独的时候 

  要学会忍受孤独,这样才会成熟起来。年轻人嘻嘻哈哈、打打闹闹惯了,到了一个陌生的环境,面对形形色色的人和事,一下子不知所措起来,有时连一个可以倾心说话的地方也没有。这时,千万别浮躁,学会静心,学会忍受孤独。在孤独中思考,在思考中成熟,在成熟中升华。不要因为寂寞而乱了方寸,而去做无聊无益的事情,白白浪费了宝贵的时间。  

1.4、走运时要做好倒霉的准备

  有一天,一只狐狸走到一个葡萄园外,看见里面水灵灵的葡萄垂涎欲滴。可是外面有栅栏挡着,无法进去。于是它一狠心绝食三日,减肥之后,终于钻进葡萄园内饱餐一顿。当它心满意足地想离开葡萄园时,发觉自己吃得太饱,怎么也钻不出栅栏了。相信任何人都不愿做这样的狐狸。退路同样重要。饱带干粮,晴带雨伞,点滴积累,水到渠成。有的东西今天似乎一文不值,但有朝一日也许就会身价百倍。  

1.5、不要像玻璃那样脆弱

  有的人眼睛总盯着自己,所以长不高看不远;总是喜欢怨天尤人,也使别人无比厌烦。没有苦中苦,哪来甜中甜?不要像玻璃那样脆弱,而应像水晶一样透明,太阳一样辉煌,腊梅一样坚强。既然睁开眼睛享受风的清凉,就不要埋怨风中细小的沙粒。  

1.6、管住自己的嘴巴

  不要谈论自己,更不要议论别人。谈论自己往往会自大虚伪,在名不副实中失去自己。议论别人往往陷入鸡毛蒜皮的是非口舌中纠缠不清。每天下班后和你的那些同事朋友喝酒聊天可不是件好事,因为,这中间往往会把议论同事、朋友当做话题。背后议论人总是不好的,尤其是议论别人的短处,这些会降低你的人格。  

1.7、机会从不会“失掉”,你失掉了,自有别人会得到

  不要凡事在天,守株待兔,更不要寄希望于“机会”。机会只不过是相对于充分准备而又善于创造机会的人而言的。也许,你正为失去一个机会而懊悔、埋怨的时候,机会正被你对面那个同样的“倒霉鬼”给抓住了。没有机会,就要创造机会,有了机会,就要巧妙地抓住。  

1.8、若电话老是不响,你该打出去

  很多时候,电话会给你带来意想不到的收获,它不是花瓶,仅仅成为一种摆设。交了新朋友,别忘了老朋友,朋友多了路好走。交际的一大诀窍就是主动。好的人缘好的口碑,往往助你的事业更上一个台阶。  

1.9、千万不要因为自己已经到了结婚年龄而草率结婚

  想结婚,就要找一个能和你心心相印、相辅相携的伴侣。不要因为放纵和游戏而恋爱,不要因为恋爱而影响工作和事业,更不要因一桩草率而失败的婚姻而使人生受阻。感情用事往往会因小失大。  

1.10、写出你一生要做的事情,把单子放在皮夹里,经常拿出来看

  人生要有目标,要有计划,要有提醒,要有紧迫感。一个又一个小目标串起来,就成了你一生的大目标。生活富足了,环境改善了,不要忘了皮夹里那张看似薄薄的单子。




[1] 葛彤 基于机器学习的室内wifi定位算法研究 北京邮电2017
[2] 卞智. 基于机器学习算法的指纹匹配定位技术研究[D]. 北京邮电大学, 2017.
[3] 覃玉清. 基于深度学习的WIFI定位算法[D]. 南京大学, 2014.
[4] 刘万寿. 基于WiFi技术的室内无线定位方法研究[D]. 哈尔滨工程大学, 2015.
[5] 王鹏. 基于机器学习的无线传感网络节点定位方法研究[D]. 浙江工业大学, 2011.
[6] 李军, 何星, 蔡云泽,等. 基于K-means和Random Forest的WiFi室内定位方法[J]. 控制工程, 2017, 24(4):787-792.
[7] 徐龙阳. 基于机器学习的室内定位方法综述[J]. 电脑知识与技术, 2018(1).
[8] Cong C, Men X. An Innovative Indoor Location Algorithm Based on Supervised Learning and WIFI Fingerprint Classification[C]// International Conference On Signal And Information Processing, Networking And Computers. Springer, Singapore, 2017:238-246.
[9] Elbasiony R, Gomaa W. WiFi Localization for Mobile Robots Based on Random Forests and GPLVM[C]// International Conference on Machine Learning and Applications. IEEE, 2015:225-230.
[10] Hernández N, Ocaña M, Alonso J M, et al. WiFi-based indoor localization and tracking of a moving device[C]// Ubiquitous Positioning, Indoor Navigation & Location Based Services. IEEE, 2014:281-289.
[11] Wang , Qiaojun Kernel learning and applications in wireless localization
[12] Wu H, Chen J, Wang C, et al. A Kernel-Based Localization Approach in Wireless Sensor Networks[C]// International Conference on Future Generation Communication and
[13] Tran D A, Nguyen T. Localization In Wireless Sensor Networks Based on Support Vector Machines[J]. IEEE Transactions on Parallel & Distributed Systems, 2008, 19(7):981-994.NETWORKING. IEEE, 2008:31-34.
[14] Jaroenkittichai P, Leelarasmee E. Utilizing Multiple Data Sources for Localization in Wireless Sensor Networks Based on Support Vector Machines[J]. Ieice Transactions on Fundamentals of Electronics Communications & Computer Sciences, 2013, E96.A(11):2081-2088.
[15] Zhu F, Wei J. Localization Algorithm in Wireless Sensor Networks Based on Improved Support Vector Machine[J]. Journal of Nanoelectronics & Optoelectronics, 2016, 12(5):452-459.
[16] Salamah A H, Tamazin M, Sharkas M A, et al. An enhanced WiFi indoor localization system based on machine learning[C]// International Conference on Indoor Positioning and Indoor Navigation. IEEE, 2016.
[17] Zhao J, Wang J. WiFi indoor positioning algorithm based on machine learning[C]// IEEE International Conference on Electronics Information and Emergency Communication. IEEE, 2017:279-283.
[18] Zhao J, Wang J. WiFi indoor positioning algorithm based on machine learning[C]// IEEE International Conference on Electronics Information and Emergency Communication. IEEE, 2017:279-283.
[19] Pan J J, Yang Q, Pan S J. Online co-localization in indoor wireless networks by dimension reduction[C]// National Conference on Artificial Intelligence. AAAI Press, 2007:1102-1107.
[20] Pan J J, Yang Q, Chang H, et al. A manifold regularization approach to calibration reduction for sensor-network based tracking[C]// National Conference on Artificial Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence Conference, July 16-20, 2006, Boston, Massachusetts, Usa. DBLP, 2006:988–993.
[21] Laine S, Aila T. Temporal Ensembling for Semi-Supervised Learning[J]. 2016.
[22] Xiaojin Z. Semi-Supervised Learning Literature Sur-vey[J]. 2005, 37(1):63-77.
[23] 黄涛涛, 顾晶晶, 庄毅. 基于半监督拉普拉斯映射的移动定位算法[J]. 计算机工程, 2018, 44(1):144-148.
[24] 李昱. 半监督流形学习算法研究和应用[D]. 西安电子科技大学, 2010.
[25] 刘海红, 周聪辉. 半监督拉普拉斯特征映射算法[J]. 计算机工程与设计, 2012, 33(2):601-606.
[26] 杨剑, 王珏, 钟宁. 流形上的Laplacian半监督回归[J]. 计算机研究与发展, 2007, 44(7):1121-1127.
[27] Yang B, Xu J, Yang J, et al. Localization algorithm in wireless sensor networks based on semi-supervised manifold learning and its application[J]. Cluster Computing, 2010, 13(4):435-446.
[28] Zhou M, Tang Y, Nie W, et al. GrassMA: Graph-based Semi-supervised Manifold Alignment for Indoor WLAN Localization[J]. IEEE Sensors Journal, 2017, PP(99):1-1.
[29] Belkin M, Niyogi P, Sindhwani V. Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples[M]. JMLR.org, 2006.
[30] Wang J, Luo J, Pan S J, et al. Learning-Based Outdoor Localization Exploiting Crowd-Labeled WiFi Hotspots[J]. IEEE Transactions on Mobile Computing, PP(99):1-1.
[31] Pan J J, Yang Q, Pan S J. Online co-localization in indoor wireless networks by dimension reduction[C]// National Conference on Artificial Intelligence. AAAI Press, 2007:1102-1107.
https://blog.csdn.net/jrunw/article/details/79205322
https://www.coursera.org/learn/machine-learning/home/welcome
https://blog.csdn.net/hamigua_12/article/details/8695527
https://blog.csdn.net/zb1165048017/article/details/51360362
https://blog.csdn.net/jrunw/article/details/79205322
http://wwv.cyzone.cn/a/20170422/310196.html
https://blog.csdn.net/sjtuai/article/details/75375578
https://www.cnblogs.com/tiandsp/archive/2013/03/06/2946310.html
[1] Wang J, Tan N, Luo J, et al. WOLoc: WiFi-only outdoor localization using crowdsensed hotspot labels[C]// INFOCOM 2017 - IEEE Conference on Computer Communications, IEEE. IEEE, 2017.
[2] Wang J, Luo J, Pan S J, et al. Learning-Based Outdoor Localization Exploiting Crowd-Labeled WiFi Hotspots[J]. IEEE Transactions on Mobile Computing, PP(99):1-1.
[3] Belkin M. Semi-supervised learning on manifolds[J]. Machine Learning, 2004, 56(1-3):209-239.
[4] Zheng V W, Pan S J, Yang Q, et al. Transferring multi-device localization models using latent multi-task learning[C]// National Conference on Artificial Intelligence. AAAI Press, 2008:1427-1432.
[5] Pan R, Zhao J, Zheng V W, et al. Domain-constrained semi-supervised mining of tracking models in sensor networks[C]// ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Jose, California, Usa, August. DBLP, 2007:1023-1027.
[6] Pan J J, Yang Q, Chang H, et al. A manifold regularization approach to calibration reduction for sensor-network based tracking[C]// National Conference on Artificial Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence Conference, July 16-20, 2006, Boston, Massachusetts, Usa. DBLP, 2006:988–993.
[7] Pan J J, Pan S J, Zheng V W, et al. Digital Wall: A Power-efficient Solution for Location-based Data Sharing[C]// IEEE International Conference on Pervasive Computing & Communications. IEEE Computer Society, 2008:645-650.
[8] Pan S J, Kwok J T, Yang Q, et al. Adaptive localization in a dynamic WiFi environment through multi-view learning[C]// National Conference on Artificial Intelligence. AAAI Press, 2007:1108-1113.
[9] Belkin M, Niyogi P. Semi-Supervised Learning on Riemannian Manifolds[J]. Machine Learning, 2004, 56(1-3):209-239.
[10] Pan J J, Pan S J, Yin J, et al. Tracking mobile users in wireless networks via semi-supervised colocalization[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2012, 34(3):587.

[1] 黄涛涛, 顾晶晶, 庄毅. 基于半监督拉普拉斯映射的移动定位算法[J]. 计算机工程, 2018, 44(1):144-148.
[2] 杨斌, 徐金梧, 阳建宏,等. 基于半监督流形学习的无线传感器网络定位方法及其应用[J]. 工程科学学报, 2010, 32(7):946-951.
[3] 夏颖, 马琳, 张中兆,等. 基于半监督流形学习的 WLAN 室内定位算法[J]. 系统工程与电子技术, 2014(7):1422-1427.
[4] 王成群. 基于学习算法的无线传感器网络定位问题研究[D]. 浙江大学, 2009.
[5] 周牧, 唐云霞, 田增山,等. 基于流形插值数据库构建的WLAN室内定位算法[J]. 电子与信息学报, 2017, 39(8):1826-1834.
[6] Yang B, Xu J, Yang J, et al. Localization algorithm in wireless sensor networks based on semi-supervised manifold learning and its application[J]. Cluster Computing, 2010, 13(4):435-446.
[7] Belkin M, Niyogi P, Sindhwani V. Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples[M]. JMLR.org, 2006.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值