一、回溯算法框架
解决一个回溯问题,实际上就是一个决策树的遍历过程。你只需要思考 3 个问题:
-
路径:也就是已经做出的选择。
-
选择列表:也就是你当前可以做的选择。
-
结束条件:也就是到达决策树底层,无法再做选择的条件。
回溯算法框架代码:
result = []
def backtrack(路径, 选择列表):
if 满足结束条件:
result.add(路径)
return
for 选择 in 选择列表:
做选择
backtrack(路径, 选择列表)
撤销选择
其核心就是 for 循环里面的递归,在递归调用之前做选择,在递归调用之后撤销选择。该框架底层是如何实现的呢?
二、全排列问题
我们先讨论不重复数字的全排列,对于n 个不重复的数,全排列共有 n! 个
比如[1,2,3],一般是这样:
- 先固定第一位为 1,然后第二位可以是 2,那么第三位只能是 3;
- 然后可以把第二位变成 3,第三位就只能是 2 了;
- 然后就只能变化第一位,变成 2,然后再穷举后两位

其实这回溯算法就是决策树,在每个节点决策出需要选择的节点。而全排列是不允许重复使用数字的。
所以这样我们呢就可以解释路径、选择列表、结束条件的含义了:
- [2] 就是「路径」,记录你已经做过的选择;
- [1,3] 就是「选择列表」,表示你当前可以做出的选择;
- 「结束条件」就是遍历到树的底层,在这里就是选择列表为空的时候。
我们定义的 backtrack 函数其实就像一个指针,在这棵树上游走,同时要正确维护每个节点的属性,每当走到树的底层,其「路径」就是一个全排列。
各种搜索问题其实都是树的遍历问题,而多叉树的遍历框架就是这样:
void traverse(TreeNode root) {
for (TreeNode child : root.childern)
// 前序遍历需要的操作
traverse(child);
// 后序遍历需要的操作
}
所谓前序遍历和后序遍历就是:

前序遍历就是从根节点遍历向叶子节点,后序遍历就是从叶子节点返回根节点。所以和回溯法思想一样,回溯法遍历到叶子节点后,需要返回往后遍历。
所以回到我们的排列中,回溯的过程就是来维护我们的路径和选择列表的过程,通过回溯递归函数在树上游走来维护

所以全排列的框架就是:
List<List<Integer>> res = new LinkedList<>();

本文详细介绍了回溯算法的原理及其在全排列、N皇后问题和子集问题中的应用。回溯算法是一种在决策树中进行深度优先搜索的策略,涉及路径、选择列表和结束条件三个关键要素。通过维护路径和选择列表,算法能在遍历过程中找到所有可能的解决方案。文章以全排列为例,解释了如何构建和应用回溯框架,并探讨了N皇后问题和子集问题的解决方案。
最低0.47元/天 解锁文章
1761

被折叠的 条评论
为什么被折叠?



