前言:了解Stream
Stream 是Java8 中处理集合的关键抽象概念,它可以指定你希望对集合进行的操作,可以执行非常复杂的查找、过滤和映射数据等操作。使用Stream API 对集合数据进行操作,就类似于使用SQL 执行的数据库查询。也可以使用Stream API 来并行执行操作。简而言之,Stream API 提供了一种高效且易于使用的处理数据的方式。
流(Stream)到底是什么呢?
是数据渠道,用于操作数据源(集合、数组等)所生成的元素序列。
“集合讲的是数据,流讲的是计算!”
注意:
- Stream自己不会存储元素。
- Stream不会改变源对象。相反,他们会返回一个持有结果的新Stream。
- Stream操作是延迟执行的。这意味着他们会等到需要结果的时候才执行。
一、Stream的操作三个步骤
- 创建Stream:一个数据源(如:集合、数组),获取一个流
- 中间操作:一个中间操作链,对数据源的数据进行处理
- 终止操作(终端操作):一个终止操作,执行中间操作链,并产生结果
二、创建Stream
方式一:Java8中的Collection接口被扩展,提供了两个获取流的方法
- default Stream<E> stream() 返回一个顺序流
- default Stream<E> parallelStream() 返回一个并行流
List
<
String
>
list
=
new
ArrayList
<>
()
;
Stream
<
String
>
stream
=
list
.
stream
()
;
Stream
<
String
>
parallelStream
=
list
.
parallelStream
()
;
方式二:Java8中的Arrays的静态方法stream()可以获取数组流:
- static <T> Stream<T> stream(T[] array) 返回一个流
- 重载形式,能够处理对应基本类型的数组:
- public static IntStream stream(int[] array)
- public static LongStream stream(long[] array)
- public static DoubleStream stream(double[] array)
Integer
[]
nums
=
new
Integer
[
10
]
;
Stream
<
Integer
>
stream1
=
Arrays
.
stream
(
nums
)
;
int
[]
array
=
new int
[
10
]
;
IntStream
stream2
=
Arrays
.
stream
(
array
)
;
方式三:由值创建流。可以使用静态方法Stream,of(),通过显示值创建一个流。它可以接受任意数量的参数。
- public static<T> Stream<T> of(T.....values) 返回一个流
Stream
<
Integer
>
stream3
=
Stream
.
of
(
1
,
2
,
3
,
45
,
5
)
;
方法四:可以使用静态方法Stream.iterate()和Stream.generate(),创建无限流。
- 迭代
- public static<T> Stream<T> iterate(final T seed,final UnaryOperator<T> f)
- 生成
- public static<T> Stream<T> generate(Supplier<T> s);
//迭代
Stream
<
Integer
>
stream4
=
Stream
.
iterate
(
0
,
(
x
)
-> x
+
2
)
.
limit
(
5
)
;
stream4
.
forEach
(
System
.
out
::println
)
;
//生成
Stream
<
Double
>
stream
=
Stream
.
generate
(
Math
::random
)
.
limit
(
5
)
;
stream
.
forEach
(
System
.
out
::println
)
;
结果
0
2
4
6
8
0.5890486852544172
0.7901381894082655
0.4814779102679294
0.9651599659042338
0.6135549728768882
三、Stream的中间操作
多个中间操作可以连接起来形成一个流水线,除非流水线上触发终止操作,否则中间操作不会执行任何的处理!而在终止操作时一次性全部处理,称为“惰性求值”。
筛选和切片
方法
|
描述
|
filter(Predicate p)
|
接收Lambda,从流中排除某些元素
|
distinct()
|
筛选,通过流所生成元素的hashCode()和equals()去除重复的元素
|
limit(long maxSize)
|
截断流,使其元素不超过所给定的数量
|
skip(long n)
|
跳过元素,返回一个扔掉了前n个元素的流。若流中元素不足n个,则返回一个空流。与limit互补
|
List<Employee> emps = Arrays.asList(
new Employee(102, "李四", 59, 6666.66),
new Employee(101, "张三", 18, 9999.99),
new Employee(103, "王五", 28, 3333.33),
new Employee(104, "赵六", 8, 7777.77),
new Employee(104, "赵六", 8, 7777.77),
new Employee(104, "赵六", 8, 7777.77),
new Employee(105, "田七", 38, 5555.55)
);
/*
筛选与切片
filter——接收 Lambda , 从流中排除某些元素。
limit——截断流,使其元素不超过给定数量。
skip(n) —— 跳过元素,返回一个扔掉了前 n 个元素的流。若流中元素不足 n 个,则返回一个空流。与 limit(n) 互补
distinct——筛选,通过流所生成元素的 hashCode() 和 equals() 去除重复元素
*/
//内部迭代:迭代操作 Stream API 内部完成
@Test
public void test2(){
//所有的中间操作不会做任何的处理
Stream<Employee> stream = emps.stream()
.filter((e) -> {
System.out.println("测试中间操作");
return e.getAge() <= 35;
});
//只有当做终止操作时,所有的中间操作会一次性的全部执行,称为“惰性求值”
stream.forEach(System.out::println);
}
//外部迭代
@Test
public void test3(){
Iterator<Employee> it = emps.iterator();
while(it.hasNext()){
System.out.println(it.next());
}
}
@Test
public void test4(){
emps.stream()
.filter((e) -> {
System.out.println("短路!"); // && ||
return e.getSalary() >= 5000;
}).limit(3)
.forEach(System.out::println);
}
@Test
public void test5(){
emps.parallelStream()
.filter((e) -> e.getSalary() >= 5000)
.skip(2)
.forEach(System.out::println);
}
@Test
public void test6(){
emps.stream()
.distinct()
.forEach(System.out::println);
}
映射
方法
|
描述
|
map(Function f)
|
接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的元素。
|
mapToDouble(ToDoubleFunction f)
|
接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的DoubleStream。
|
mapToInt(ToIntFunction f)
|
接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的IntStream。
|
mapToLong(ToLongFuction f)
|
接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的LongStream。
|
flatMap(Function f)
|
接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流
|
@Test
public void
test3
()
{
List
<
String
>
string
=
Arrays
.
asList
(
"aaa"
,
"bbb"
,
"ccc"
,
"ddd"
,
"eee"
)
;
Stream
<
String
>
stream
=
string
.
stream
()
.
map
(
String
::toUpperCase
)
;
stream
.
forEach
(
System
.
out
::println
)
;
System
.
out
.
println
(
"-------------------------------------"
)
;
Stream
<
Stream
<
Character
>>
streamStream
=
string
.
stream
()
.
map
(
TestStreamAPI
::filterCharacter
)
;
streamStream
.
forEach
((
e
)
->
{
e
.
forEach
(
System
.
out
::println
)
;
}
)
;
System
.
out
.
println
(
"-------------------------------------"
)
;
Stream
<
Character
>
stream1
=
string
.
stream
()
.
flatMap
(
TestStreamAPI
::filterCharacter
)
;
stream1
.
forEach
(
System
.
out
::println
)
;
}
public static
Stream
<
Character
>
filterCharacter
(
String
str
)
{
List
<
Character
>
list
=
new
ArrayList
<>
()
;
for
(
Character
c
:
str
.
toCharArray
())
{
list
.
add
(
c
)
;
}
return
list
.
stream
()
;
}
排序
方法
|
描述
|
sorted()
|
产生一个新流,其中按自然排序顺序排序
|
sorted(Comparator com)
|
产生一个新流,其中按比较器顺序排序
|
/*
sorted()——自然排序
sorted(Comparator com)——定制排序
*/
@Test
public void test2(){
emps.stream()
.map(Employee::getName)
.sorted()
.forEach(System.out::println);
System.out.println("------------------------------------");
emps.stream()
.sorted((x, y) -> {
if(x.getAge() == y.getAge()){
return x.getName().compareTo(y.getName());
}else{
return Integer.compare(x.getAge(), y.getAge());
}
}).forEach(System.out::println);
}
四、Stream的终止操作
终止操作从会流的流水线生成结果。其结果可以是任何不是流的值,例如:List、Integer甚至void。
查找与匹配
方法
|
描述
|
allMatch(Predicate p)
|
检查是否匹配所有元素
|
anyMatch(Predicate p)
|
检查是否至少匹配一个元素
|
noneMatch(Predicate p)
|
检查是否没有匹配所有元素
|
findFirst()
|
返回第一个元素
|
findAny()
|
返回当前流中的任意元素
|
count()
|
要返回流中元素总数
|
max(Comparator c)
|
返回流中最大值
|
min(Comparator)
|
返回流中最小值
|
forEach(Consumer c)
|
内部迭代(使用Collection 接口需要用户去做迭代,称为外部迭代。相反,Stream API使用内部迭代------他帮你把迭代做了)
|
/
*
* 一、 Stream 的操作步骤
*
* 1. 创建 Stream
*
* 2. 中间操作
*
* 3. 终止操作
*/
public class TestStreamAPI2 {
List<Employee> emps = Arrays.asList(
new Employee(102, "李四", 59, 6666.66, Status.BUSY),
new Employee(101, "张三", 18, 9999.99, Status.FREE),
new Employee(103, "王五", 28, 3333.33, Status.VOCATION),
new Employee(104, "赵六", 8, 7777.77, Status.BUSY),
new Employee(104, "赵六", 8, 7777.77, Status.FREE),
new Employee(104, "赵六", 8, 7777.77, Status.FREE),
new Employee(105, "田七", 38, 5555.55, Status.BUSY)
);
//3. 终止操作
/*
allMatch——检查是否匹配所有元素
anyMatch——检查是否至少匹配一个元素
noneMatch——检查是否没有匹配的元素
findFirst——返回第一个元素
findAny——返回当前流中的任意元素
count——返回流中元素的总个数
max——返回流中最大值
min——返回流中最小值
*/
@Test
public void test1(){
boolean bl = emps.stream()
.allMatch((e) -> e.getStatus().equals(Status.BUSY));
System.out.println(bl);
boolean bl1 = emps.stream()
.anyMatch((e) -> e.getStatus().equals(Status.BUSY));
System.out.println(bl1);
boolean bl2 = emps.stream()
.noneMatch((e) -> e.getStatus().equals(Status.BUSY));
System.out.println(bl2);
}
@Test
public void test2(){
Optional<Employee> op = emps.stream()
.sorted((e1, e2) -> Double.compare(e1.getSalary(), e2.getSalary()))
.findFirst();
System.out.println(op.get());
System.out.println("--------------------------------");
Optional<Employee> op2 = emps.parallelStream()
.filter((e) -> e.getStatus().equals(Status.FREE))
.findAny();
System.out.println(op2.get());
}
@Test
public void test3(){
long count = emps.stream()
.filter((e) -> e.getStatus().equals(Status.FREE))
.count();
System.out.println(count);
Optional<Double> op = emps.stream()
.map(Employee::getSalary)
.max(Double::compare);
System.out.println(op.get());
Optional<Employee> op2 = emps.stream()
.min((e1, e2) -> Double.compare(e1.getSalary(), e2.getSalary()));
System.out.println(op2.get());
}
//注意:流进行了终止操作后,不能再次使用
@Test
public void test4(){
Stream<Employee> stream = emps.stream()
.filter((e) -> e.getStatus().equals(Status.FREE));
long count = stream.count();
stream.map(Employee::getSalary)
.max(Double::compare);
}
}
归约
reduce(T iden,BinaryOperator b)
|
可以将流中元素反复结合起来,得到一个值,返回T
|
reduce(BinaryOperator b)
|
可以将流中元素反复结合起来,得到一个值。返回Optional<T>
|
注意
:map和reduce的连接通常称为map-reduce模式,因为Google用它进行网路搜索而出名
@Test
public void test1(){
List<Integer> list = Arrays.asList(1,2,3,4,5,6,7,8,9,10);
Integer sum = list.stream()
.reduce(0, (x, y) -> x + y);
System.out.println(sum);
System.out.println("----------------------------------------");
Optional<Double> op = emps.stream()
.map(Employee::getSalary)
.reduce(Double::sum);
System.out.println(op.get());
}
收集
collect(Collector c)
|
将流转换为其他形式,接收一个Collector接口的实现,用于给Stream中元素做汇总的方法
|
Collector接口中的方法的实现决定了如何对流执行收集操作(如收集到List、Set、Map)。但是Collectors实用类提供了很多静态方法,可以方便地创建常见收集器实例。
方法
|
返回类型
|
作用
|
toList
|
List<T>
|
把流中元素收集到List
|
toSet
|
Set<T>
|
把流中元素收集到Set
|
toCollection
|
Collection<T>
|
把流中元素收集到创建的集合
|
counting
|
Long
|
计算流中元素的个数
|
summingInt
|
Integer
|
对流中元素的整数属性求和
|
averagingInt
|
Double
|
计算流中元素Integer属性的平均值
|
summarizingInt
|
IntSummaryStatistics
|
收集流中Integer属性的统计值。如:平均值
|
joining
|
String
|
连接流中每个字符串
|
maxBy
|
Optional<T>
|
根据比较器选择最大值
|
minBy
|
Optional<T>
|
根据比较器选择最小值
|
reducing
|
归约产生的类型
|
从一个作为累加器的初始值开始,利用BinarayOperator与流中元素逐个结合,从而归约成单个值。
|
collectingAndThen
|
转换函数返回的类型
|
包裹另一个收集器,对其结果转换函数
|
groupingBy
|
Map<K,List<T>>
|
根据某属性值对流分组,属性为K,结果为V
|
partitionBy
|
Map<Boolean,List<T>>
|
根据true或false进行分区
|
/
/collect——将流转换为其他形式。接收一个 Collector接口的实现,用于给Stream中元素做汇总的方法
@Test
public void test3(){
List<String> list = emps.stream()
.map(Employee::getName)
.collect(Collectors.toList());
list.forEach(System.out::println);
System.out.println("----------------------------------");
Set<String> set = emps.stream()
.map(Employee::getName)
.collect(Collectors.toSet());
set.forEach(System.out::println);
System.out.println("----------------------------------");
HashSet<String> hs = emps.stream()
.map(Employee::getName)
.collect(Collectors.toCollection(HashSet::new));
hs.forEach(System.out::println);
}
@Test
public void test4(){
Optional<Double> max = emps.stream()
.map(Employee::getSalary)
.collect(Collectors.maxBy(Double::compare));
System.out.println(max.get());
Optional<Employee> op = emps.stream()
.collect(Collectors.minBy((e1, e2) -> Double.compare(e1.getSalary(), e2.getSalary())));
System.out.println(op.get());
Double sum = emps.stream()
.collect(Collectors.summingDouble(Employee::getSalary));
System.out.println(sum);
Double avg = emps.stream()
.collect(Collectors.averagingDouble(Employee::getSalary));
System.out.println(avg);
Long count = emps.stream()
.collect(Collectors.counting());
System.out.println(count);
System.out.println("--------------------------------------------");
DoubleSummaryStatistics dss = emps.stream()
.collect(Collectors.summarizingDouble(Employee::getSalary));
System.out.println(dss.getMax());
}
//分组
@Test
public void test5(){
Map<Status, List<Employee>> map = emps.stream()
.collect(Collectors.groupingBy(Employee::getStatus));
System.out.println(map);
}
//多级分组
@Test
public void test6(){
Map<Status, Map<String, List<Employee>>> map = emps.stream()
.collect(Collectors.groupingBy(Employee::getStatus, Collectors.groupingBy((e) -> {
if(e.getAge() >= 60)
return "老年";
else if(e.getAge() >= 35)
return "中年";
else
return "成年";
})));
System.out.println(map);
}
//分区
@Test
public void test7(){
Map<Boolean, List<Employee>> map = emps.stream()
.collect(Collectors.partitioningBy((e) -> e.getSalary() >= 5000));
System.out.println(map);
}
//
@Test
public void test8(){
String str = emps.stream()
.map(Employee::getName)
.collect(Collectors.joining("," , "----", "----"));
System.out.println(str);
}
@Test
public void test9(){
Optional<Double> sum = emps.stream()
.map(Employee::getSalary)
.collect(Collectors.reducing(Double::sum));
System.out.println(sum.get());
}
五、
并行流与串行流
并行流
就是把一个内容分成多个数据块,并用不同的线程分别处理每个数据块的流。
Java8中对并行进行了优化,我们可以很容易的对数据进行并行操作。Stream API可以声明式地通过parallel()与sequential()在并行流与顺序流之间进行切换。
了解Fork/Join框架
:
就是在必要的情况下,讲一个大任务,进行拆分(fork)成若干个小任务(拆到不可再拆时),再将一个个小任务的运算结果进行join汇总。
Fork/Join框架与传统线程池的区别
采用“工作窃取”模式(work-stealing):
当执行新的任务时它可以将其拆分分成更小的任务执行,并将小任务加到线程队列中,然后再从一个随机线程的队列中偷一个并把它放在自己的队列中。
相对于一般的线程池实现,fork/join框架的优势体现在对其中包含的任务的处理方式上.在一般的线程池中,如果一个线程正在执行的任务由于某些原因无法继续运行,那么该线程会处于等待状态.而在fork/join框架实现中,如果某个子问题由于等待另外一个子问题的完成而无法继续运行.那么处理该子问题的线程会主动寻找其他尚未运行的子问题来执行.这种方式减少了线程的等待时间,提高了性能.