【沙茶了+筛选保存最大质因数】【HDU2136】Largest prime factor

9 篇文章 0 订阅

Largest prime factor

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6990    Accepted Submission(s): 2471


Problem Description
Everybody knows any number can be combined by the prime number.
Now, your task is telling me what position of the largest prime factor.
The position of prime 2 is 1, prime 3 is 2, and prime 5 is 3, etc.
Specially, LPF(1) = 0.
 

Input
Each line will contain one integer n(0 < n < 1000000).
 

Output
Output the LPF(n).
 

Sample Input
  
  
1 2 3 4 5
 

Sample Output
  
  
0 1 2 1 3
 

Author
Wiskey
 

Source
 

Recommend
威士忌   |   We have carefully selected several similar problems for you:   2133  2135  1215  2137  2134 
 


我的思路 先打了素数表 再用二分查找去找最大的素数。。结果果断TLE了

代码在此:

#include<stdio.h>
int YNprime[1000001];
int prime[200000];
int totprime=1;
int getprime(int maxN)
{
	int i,j,k;
	for(i=2;i<=maxN;i++)
	if(YNprime[i]==0) 
	   {
	     prime[totprime++]=i;
				for(j=2;i*j<=maxN;j++)
				YNprime[i*j]=1;
	   }
	return 1;
}
int find(int s,int t,int N)
{
	int i;
	int m=(s+t)/2;
	if(s==t) return s;
	if(prime[m]>N) return find(s,m,N);
    if(prime[m]<N) return find(m+1,t,N);
	else return m;
}
int main()
{
	freopen("a.in","r",stdin);
	freopen("a.out","w",stdout);
	int n,i,ans,k;
	getprime(1000000);
	while(scanf("%d",&n)!=EOF)
	{
		ans=0;
		if(n==1) {printf("0\n");continue;}
		k=find(1,totprime-1,n);
		for(i=k+10;i>=1;i--)
		if(n%prime[i]==0)  {ans=i;break;}
		printf("%d\n",ans);
	}	
	return 0;
}
结果发现沙茶了

筛选法的时候就能直接找最大的素数

#include <cstdio>
#include <iostream>

using namespace std;

#define Maxl 1000005
int prime[Maxl];
int rank[Maxl];
int main()
{
	int k = 0, i, j;
	for (i =2; i < Maxl; i++)
	{
		if (prime[i] == 0)
		{
			rank[i] = ++k;
			for (j = i; j < Maxl; j += i)
			{
				prime[j] = i;
			}
		}
	}
	prime[1] = 0;
	int n;
	while(scanf("%d", &n) == 1)
	{
		if(n == 1)
		{
			printf("0\n");
			continue;
			}
		int k = prime[n];
		printf("%d\n", rank[k]);
	}
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值