N 皇后问题
!!! question
根据国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。给定 $n$ 个皇后和一个 $n \times n$ 大小的棋盘,寻找使得所有皇后之间无法相互攻击的摆放方案。
如下图所示,当
n
=
4
n = 4
n=4 时,共可以找到两个解。从回溯算法的角度看,
n
×
n
n \times n
n×n 大小的棋盘共有
n
2
n^2
n2 个格子,给出了所有的选择 choices
。在逐个放置皇后的过程中,棋盘状态在不断地变化,每个时刻的棋盘就是状态 state
。
下图展示了本题的三个约束条件:多个皇后不能在同一行、同一列、同一对角线。值得注意的是,对角线分为主对角线 \
和次对角线 /
两种。
逐行放置策略
皇后的数量和棋盘的行数都为 n n n ,因此我们容易得到一个推论:棋盘每行都允许且只允许放置一个皇后。
也就是说,我们可以采取逐行放置策略:从第一行开始,在每行放置一个皇后,直至最后一行结束。
如下图所示,为 4 4 4 皇后问题的逐行放置过程。受画幅限制,下图仅展开了第一行的其中一个搜索分支,并且将不满足列约束和对角线约束的方案都进行了剪枝。
本质上看,逐行放置策略起到了剪枝的作用,它避免了同一行出现多个皇后的所有搜索分支。
列与对角线剪枝
为了满足列约束,我们可以利用一个长度为
n
n
n 的布尔型数组 cols
记录每一列是否有皇后。在每次决定放置前,我们通过 cols
将已有皇后的列进行剪枝,并在回溯中动态更新 cols
的状态。
那么,如何处理对角线约束呢?设棋盘中某个格子的行列索引为 ( r o w , c o l ) (row, col) (row,col) ,选定矩阵中的某条主对角线,我们发现该对角线上所有格子的行索引减列索引都相等,即对角线上所有格子的 r o w − c o l row - col row−col 为恒定值。
也就是说,如果两个格子满足
r
o
w
1
−
c
o
l
1
=
r
o
w
2
−
c
o
l
2
row_1 - col_1 = row_2 - col_2
row1−col1=row2−col2 ,则它们一定处在同一条主对角线上。利用该规律,我们可以借助下图所示的数组 diag1
,记录每条主对角线上是否有皇后。
同理,次对角线上的所有格子的
r
o
w
+
c
o
l
row + col
row+col 是恒定值。我们同样也可以借助数组 diag2
来处理次对角线约束。
代码实现
请注意,
n
n
n 维方阵中
r
o
w
−
c
o
l
row - col
row−col 的范围是
[
−
n
+
1
,
n
−
1
]
[-n + 1, n - 1]
[−n+1,n−1] ,
r
o
w
+
c
o
l
row + col
row+col 的范围是
[
0
,
2
n
−
2
]
[0, 2n - 2]
[0,2n−2] ,所以主对角线和次对角线的数量都为
2
n
−
1
2n - 1
2n−1 ,即数组 diag1
和 diag2
的长度都为
2
n
−
1
2n - 1
2n−1 。
=== “Python”
```python title="n_queens.py"
[class]{}-[func]{backtrack}
[class]{}-[func]{n_queens}
```
=== “C++”
```cpp title="n_queens.cpp"
[class]{}-[func]{backtrack}
[class]{}-[func]{nQueens}
```
=== “Java”
```java title="n_queens.java"
[class]{n_queens}-[func]{backtrack}
[class]{n_queens}-[func]{nQueens}
```
=== “C#”
```csharp title="n_queens.cs"
[class]{n_queens}-[func]{backtrack}
[class]{n_queens}-[func]{nQueens}
```
=== “Go”
```go title="n_queens.go"
[class]{}-[func]{backtrack}
[class]{}-[func]{nQueens}
```
=== “Swift”
```swift title="n_queens.swift"
[class]{}-[func]{backtrack}
[class]{}-[func]{nQueens}
```
=== “JS”
```javascript title="n_queens.js"
[class]{}-[func]{backtrack}
[class]{}-[func]{nQueens}
```
=== “TS”
```typescript title="n_queens.ts"
[class]{}-[func]{backtrack}
[class]{}-[func]{nQueens}
```
=== “Dart”
```dart title="n_queens.dart"
[class]{}-[func]{backtrack}
[class]{}-[func]{nQueens}
```
=== “Rust”
```rust title="n_queens.rs"
[class]{}-[func]{backtrack}
[class]{}-[func]{n_queens}
```
=== “C”
```c title="n_queens.c"
[class]{}-[func]{backtrack}
[class]{}-[func]{nQueens}
```
=== “Zig”
```zig title="n_queens.zig"
[class]{}-[func]{backtrack}
[class]{}-[func]{nQueens}
```
逐行放置 n n n 次,考虑列约束,则从第一行到最后一行分别有 n n n、 n − 1 n-1 n−1、 … \dots …、 2 2 2、 1 1 1 个选择,因此时间复杂度为 O ( n ! ) O(n!) O(n!) 。实际上,根据对角线约束的剪枝也能够大幅地缩小搜索空间,因而搜索效率往往优于以上时间复杂度。
数组 state
使用
O
(
n
2
)
O(n^2)
O(n2) 空间,数组 cols
、diags1
和 diags2
皆使用
O
(
n
)
O(n)
O(n) 空间。最大递归深度为
n
n
n ,使用
O
(
n
)
O(n)
O(n) 栈帧空间。因此,空间复杂度为
O
(
n
2
)
O(n^2)
O(n2) 。