毕业设计——基于OpenCV的人脸实时检测系统设计与实现,适合课程设计、大作业等

完整源码资源下载地址
点此下载完整源码

源码涵盖内容
在这里插入图片描述基于OpenCV的人脸实时检测系统设计与实现综述

一、引言

随着计算机视觉技术的迅速发展,人脸检测作为其中的一个重要分支,已经广泛应用于安全监控、人机交互、智能识别等领域。OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉库,提供了大量用于图像和视频处理的函数,为人脸实时检测系统的开发提供了强有力的支持。本综述旨在介绍基于OpenCV的人脸实时检测系统的设计与实现过程,以及相关的技术原理和关键算法。

二、系统设计

基于OpenCV的人脸实时检测系统主要包括视频流捕获、人脸检测、结果展示等模块。系统首先通过摄像头或视频文件捕获视频流,然后利用OpenCV提供的人脸检测算法对视频中的每一帧进行人脸检测,最后将检测结果以图形化的方式展示给用户。

  1. 视频流捕获:使用OpenCV的VideoCapture类捕获视频流,可以从摄像头、视频文件或网络流中读取视频数据。
  2. 人脸检测:OpenCV提供了多种人脸检测算法,如Haar级联分类器、LBP(Local Binary Patterns)分类器、深度学习算法(如MTCNN、YOLOv3等)。这些算法可以根据实际需求选择使用。在本系统中,可以采用Haar级联分类器或深度学习算法进行人脸检测。
  3. 结果展示:使用OpenCV的imshow函数将检测结果以图像的形式展示给用户。可以在图像中绘制矩形框标记出人脸的位置,并显示相关的识别信息。

三、技术原理与关键算法

  1. Haar级联分类器:Haar级联分类器是一种基于特征的分类器,通过训练大量的正负样本来学习目标的特征。它采用一种级联的结构,将多个简单的分类器组合成一个复杂的分类器,以提高检测的准确性和效率。
  2. 深度学习算法:近年来,深度学习算法在人脸检测领域取得了显著的成果。MTCNN(Multi-task Cascaded Convolutional Networks)是一种基于卷积神经网络的人脸检测算法,它采用多任务学习的方式,同时预测人脸的边界框和关键点位置。YOLOv3(You Only Look Once version 3)是一种实时目标检测算法,也可以用于人脸检测。它采用端到端的方式,直接在输入图像上预测边界框和类别概率。
  3. 实时性优化:为了保证系统的实时性,可以采用多线程技术或GPU加速来优化人脸检测算法的运行速度。同时,还可以采用滑动窗口或ROI(Region of Interest)策略来减少不必要的计算量。

四、实现与挑战

在实现基于OpenCV的人脸实时检测系统时,需要面临一些挑战和问题。首先,不同场景下的人脸检测难度不同,如光照变化、遮挡、姿态变化等因素都会影响人脸检测的准确性。因此,需要选择合适的算法和参数设置来适应不同的场景。其次,实时性也是系统的一个重要指标,需要采用优化技术来提高算法的运行速度。最后,还需要考虑系统的可扩展性和可维护性,以便在后续的开发中方便地添加新的功能和优化现有功能。

五、结论与展望

基于OpenCV的人脸实时检测系统具有广泛的应用前景和重要的研究价值。通过选择合适的人脸检测算法和优化技术,可以实现高效、准确的人脸实时检测功能。未来,随着计算机视觉技术的不断发展和应用场景的不断扩展,基于OpenCV的人脸实时检测系统将会面临更多的挑战和机遇。我们期待在未来能够开发出更加先进、高效、智能的人脸实时检测系统,为人们的生活和工作带来更多的便利和效益。

部分程序代码演示

#!/usr/bin/env python
# coding: utf-8

# 安装sklearn  
# 前提准备:  
#     安装numpy+mkl  
# - 按照numpy+mkl->scipy->sklearn的顺序一步步在cmd下 pip install+包的绝对路径 即可,这回再次import sklearn做测试,发现不会报错说你没有哪个哪个包了(No module named xxx)    
#   https://www.cnblogs.com/lyr2015/p/7891069.html  
#   文件下载:https://blog.csdn.net/qq_16725749/article/details/89396438

# numpy   1.19.5
# scipy   1.2.1

# In[7]:


import os
os.getcwd()


# In[ ]:


# import tensorflow as tf
# import keras
# config = tf.ConfigProto()
# config.gpu_options.allow_growth = True
# keras.backend.tensorflow_backend.set_session(tf.Session(config=config))


# In[6]:


#!/usr/bin/env python
# -*- coding: utf-8 -*-

import random
import numpy as np
from sklearn.model_selection import train_test_split
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Dense, Activation, Flatten, Dropout
from keras.layers import Conv2D, MaxPool2D
from keras.optimizers import SGD
from keras.utils import np_utils
from keras.models import load_model
from keras import backend as K
from face_dataset import load_dataset, resize_image, IMAGE_SIZE
import warnings
warnings.filterwarnings('ignore')
import os
import sys


# In[ ]:


import keras as k
k.__version__


# In[8]:


class Dataset:
    def __init__(self, path_name):
        # 训练集
        self.train_images = None
        self.train_labels = None
        # 验证集
        # self.valid_images = None
        # self.valid_labels = None
        # 测试集
        self.test_images = None
        self.test_labels = None
        # 数据加载路径
        self.path_name = path_name
        # 当前库采用的维度顺序
        self.input_shape = None
 
    def load(self, img_rows=IMAGE_SIZE, img_cols=IMAGE_SIZE, img_channels=3, nb_classes=2):
        # 加载数据集至内存
        images, labels = load_dataset(self.path_name)
        #train_labels和test_label只有一个标签1
        train_images, test_images, train_labels, test_labels = train_test_split(images, labels, test_size=0.3,
                                                                                random_state=random.randint(0, 10))

        print('训练数据维度:',train_images.shape)#
# set_image_dim_ordering(dim_ordering)是用于设置图像的维度顺序的,有2个可选参数:
# (1)‘th’:即Theano模式,会把通道维放在第二个位置上。
# (2)‘tf’:即TensorFlow模式,会把通道维放在最后的位置上。
# 例:100张RGB三通道的16×32(高为16宽为32)彩色图
# th模式下的形式是(100, 3, 16, 32)分别是样本维100张图片、通道维3(颜色通道数)、高、宽
# tf模式下的形式是(100, 16, 32, 3)

#         if K.image_dim_ordering() == 'th':#版本问题报错,修改如下
        if K.image_data_format() == 'channels_first':#此处要仔细看一下通道维度位置变化对下面的影响
# 该参数是Keras 1.x中的image_dim_ordering,“channels_last”对应原本的“tf”,“channels_first”对应原本的“th”。
# 以128x128x128的数据为例,“channels_first”应将数据组织为(3,128,128,128),而“channels_last”应将数据组织为(128,128,128,3)。
# 该参数的默认值是~/.keras/keras.json中设置的值,若从未设置过,则为“channels_last”
            train_images = train_images.reshape(train_images.shape[0], img_channels, img_rows, img_cols)#(样本,通道.长,宽)
            test_images = test_images.reshape(test_images.shape[0], img_channels, img_rows, img_cols)#同上
            self.input_shape = (img_channels, img_rows, img_cols)
        else:
            train_images = train_images.reshape(train_images.shape[0], img_rows, img_cols, img_channels)
            test_images = test_images.reshape(test_images.shape[0], img_rows, img_cols, img_channels)
            self.input_shape = (img_rows, img_cols, img_channels)
 
            # 输出训练集、测试集的数量
            print(train_images.shape[0], 'train samples')
            print(test_images.shape[0], 'test samples')
            
            
            
            # 我们的模型使用categorical_crossentropy作为损失函数,因此需要根据类别数量nb_classes将
            # 类别标签进行one-hot编码使其向量化,在这里我们的类别只有两种,经过转化后标签数据变为二维
            train_labels = np_utils.to_categorical(train_labels, nb_classes)
            test_labels = np_utils.to_categorical(test_labels, nb_classes)
            # 像素数据浮点化以便归一化
            train_images = train_images.astype('float32')
            test_images = test_images.astype('float32')
            # 将其归一化,图像的各像素值归一化到0~1区间
            train_images /= 255.0
            test_images /= 255.0
            self.train_images = train_images
            self.test_images = test_images
            self.train_labels = train_labels
            self.test_labels = test_labels
 

 
 
 
 


# In[9]:



# CNN网络模型类
class Model:
   def __init__(self):
       self.model = None

   # 建立模型
   def build_model(self, dataset, nb_classes=2):
       # 构建一个空的网络模型,它是一个线性堆叠模型,各神经网络层会被顺序添加,专业名称为序贯模型或线性堆叠模型
       self.model = Sequential()

       # 以下代码将顺序添加CNN网络需要的各层,一个add就是一个网络层
       self.model.add(Conv2D(32, 3, 3, border_mode='same',
                                    input_shape=dataset.input_shape))  #  2维卷积层
       self.model.add(Activation('relu'))  #  激活函数层

       self.model.add(Conv2D(32, 3, 3))  # 2维卷积层
       self.model.add(Activation('relu'))  #  激活函数层

       self.model.add(MaxPool2D(pool_size=(2, 2)))  #  池化层
       self.model.add(Dropout(0.25))  #  Dropout层

       self.model.add(Conv2D(64, 3, 3, border_mode='same'))  #   2维卷积层
       self.model.add(Activation('relu'))  #  激活函数层

       self.model.add(Conv2D(64, 3, 3))  #  2维卷积层
       self.model.add(Activation('relu'))  #  激活函数层

       self.model.add(MaxPool2D(pool_size=(2, 2)))  #  池化层
       self.model.add(Dropout(0.25))  # Dropout层

       self.model.add(Flatten())  #  Flatten层
       self.model.add(Dense(512))  #  Dense层,又被称作全连接层
       self.model.add(Activation('relu'))  #  激活函数层
       self.model.add(Dropout(0.5))  # Dropout层
       self.model.add(Dense(nb_classes))  #  Dense层
       self.model.add(Activation('softmax'))  #  分类层,输出最终结果

       # 输出模型概况
       self.model.summary()

   # 训练模型
   def train(self, dataset, batch_size=20, nb_epoch=100, data_augmentation=True):
       sgd = SGD(lr=0.01, decay=1e-6,
                 momentum=0.9, nesterov=True)  # 采用SGD+momentum的优化器进行训练,首先生成一个优化器对象
       self.model.compile(loss='categorical_crossentropy',
                          optimizer=sgd,
                          metrics=['accuracy'])  # 完成实际的模型配置工作

       # 不使用数据提升,所谓的提升就是从我们提供的训练数据中利用旋转、翻转、加噪声等方法创造新的
       # 训练数据,有意识的提升训练数据规模,增加模型训练量
       if not data_augmentation:
           self.model.fit(dataset.train_images,
                          dataset.train_labels,
                          batch_size=batch_size,
                          nb_epoch=nb_epoch,
                          validation_data=(dataset.test_images, dataset.test_labels),
                          shuffle=True)
       # 使用实时数据提升
       else:
           # 定义数据生成器用于数据提升,其返回一个生成器对象datagen,datagen每被调用一
           # 次其生成一组数据(顺序生成),节省内存,其实就是python的数据生成器
           datagen = ImageDataGenerator(
               featurewise_center=False,  # 是否使输入数据去中心化(均值为0),
               samplewise_center=False,  # 是否使输入数据的每个样本均值为0
               featurewise_std_normalization=False,  # 是否数据标准化(输入数据除以数据集的标准差)
               samplewise_std_normalization=False,  # 是否将每个样本数据除以自身的标准差
               zca_whitening=False,  # 是否对输入数据施以ZCA白化
               rotation_range=20,  # 数据提升时图片随机转动的角度(范围为0~180)
               width_shift_range=0.2,  # 数据提升时图片水平偏移的幅度(单位为图片宽度的占比,0~1之间的浮点数)
               height_shift_range=0.2,  # 同上,只不过这里是垂直
               horizontal_flip=True,  # 是否进行随机水平翻转
               vertical_flip=False)  # 是否进行随机垂直翻转

           # 计算整个训练样本集的数量以用于特征值归一化、ZCA白化等处理
           datagen.fit(dataset.train_images)

           # 利用生成器开始训练模型
           self.model.fit_generator(datagen.flow(dataset.train_images, dataset.train_labels,
                                                 batch_size=batch_size),
                                    samples_per_epoch=dataset.train_images.shape[0],
                                    nb_epoch=nb_epoch,
                                    validation_data=(dataset.test_images, dataset.test_labels))

   MODEL_PATH = './mode_h5/face.model.h5'

   def save_model(self, file_path=MODEL_PATH):
       self.model.save(file_path)

   def load_model(self, file_path=MODEL_PATH):
       self.model = load_model(file_path)

   def evaluate(self, dataset):
       score = self.model.evaluate(dataset.test_images, dataset.test_labels, verbose=1)
       # print("%s: %.2f%%" % (self.model.metrics_names[1], score[1] * 100))
       print(f'{self.model.metrics_names[1]}:{score[1] * 100}%')

   # 识别人脸
   def face_predict(self, image):
       # 依然是根据后端系统确定维度顺序
       if K.image_data_format() == 'channels_first' and image.shape != (1, 3, IMAGE_SIZE, IMAGE_SIZE):
           image = resize_image(image)  # 尺寸必须与训练集一致都应该是IMAGE_SIZE x IMAGE_SIZE
           image = image.reshape((1, 3, IMAGE_SIZE, IMAGE_SIZE))  # 与模型训练不同,这次只是针对1张图片进行预测
       elif K.image_data_format() == 'channels_last' and image.shape != (1, IMAGE_SIZE, IMAGE_SIZE, 3):
           image = resize_image(image)
           image = image.reshape((1, IMAGE_SIZE, IMAGE_SIZE, 3))

           # 浮点并归一化
       image = image.astype('float32')
       image /= 255.0

       # 给出输入属于各个类别的概率,我们是二值类别,则该函数会给出输入图像属于0和1的概率各为多少
       result = self.model.predict_proba(image)
       print('result:', result)

       # 给出类别预测:0或者1
       result = self.model.predict_classes(image)

       # 返回类别预测结果
       return result[0]



if __name__ == '__main__':
    dataset = Dataset(os.getcwd())

    dataset.load()
 
    # 训练模型,这段代码不用,注释掉
    model = Model()
    model.build_model(dataset)
    # 测试训练函数的代码
    model.train(dataset)
	# model.save_model(file_path='./model_h5/me.face.model.h5')
    


# In[ ]:


# 严重过拟合


# In[ ]:

# 评估模型

# model = Model()
# # model.load_model(file_path='./model/me.face.model.h5')
# model.load_model(r"C:\Users\6\Desktop\objectForPClass\mode_h5\me.face.model.h5")
# model.evaluate(dataset)




项目备注

1、资源项目源码均已通过严格测试验证,保证能够正常运行;
2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通;
3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合;
4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。

如有其他毕设方面的需求、咨询,也可联系博主
完整源码资源下载地址
点此下载完整源码

  • 25
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白话机器学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值