[论文阅读]Learning Light-Weight Translation Models from Deep Transformer

本文提出了一种名为Group-Permutation Based Knowledge Distillation (GPKD) 的方法,结合 Skipping Sub-layer (SSL) 技术,用于将深Transformer模型压缩成轻量级模型,同时保持高性能。实验表明,这种方法在多个基准上有效,压缩后的模型在BLEU得分上几乎无损失。此外,SSL方法通过随机删除子层引入扰动,提高了教师模型的性能。
摘要由CSDN通过智能技术生成


前言

论文名:Learning Light-Weight Translation Models from Deep Transformer
论文作者:Bei Li et al.
机构:
	NLP Lab,School of Computer Science and Engineering, Northeastern University, Shenyang
	(东北大学NLP组)
	NiuTrans Research, Shenyang, China
	(小牛翻译研究中心)
期刊/会议名:AAAI 2021
本文作者:XMU_MIAO
日期:2021/1/27

摘要

  近来深度模型在神经机器翻译(MNT)取得了巨大的进展。然而,MNT在计算昂贵且耗资源。本文中,我们向学习能力强但轻量级的NMT系统迈出了一步。我们提出一种新的基于 g r o u p − p e r m u t a t i o n group{-}permutation grouppermutation的知识蒸馏方法来将深的Transformer模型压缩为一个浅的轻量模型。 在多个基准(benchmark)上的实验结果验证了我们方法的有效性。我们的压缩模型比深度模型浅8倍,而BLEU几乎没有损失。为了进一步增强 t e a c h e r teacher teacher模型的性能,我们提出了一种 S k i p p i n g    S u b − L a y e r Skipping\,\,Sub{-}Layer SkippingSubLayer的方法来随机删除子层以引入扰动训练,在WMT14 En-De上获得30.63的BLEU值。

1、Introduction & Motivation

  这篇文章从蒸馏的角度提出一种新的基于 g r o u p − p e r m u t a t i o n group{-}permutation grouppermutation的蒸馏方法 ( G P K D ) (GPKD) (GPKD)以及一种训练深度 t e a c h e r teacher teacher模型的正则化方法 S k i p p i n g    S u b − L a y e r Skipping\,\,Sub{-}Layer SkippingSubLayer(文中这两种方法都应用在了Encoder端)。基于 g r o u p − p e r m u t a t i o n group{-}permutation grouppermutation的蒸馏方法是在 s e q u e n c e − l e v e l   d i s t i l l a t i o n ( S K D ) sequence{-}level\,distillation(SKD) sequenceleveldistillation

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值