文章目录
前言
论文名:Learning Light-Weight Translation Models from Deep Transformer
论文作者:Bei Li et al.
机构:
NLP Lab,School of Computer Science and Engineering, Northeastern University, Shenyang
(东北大学NLP组)
NiuTrans Research, Shenyang, China
(小牛翻译研究中心)
期刊/会议名:AAAI 2021
本文作者:XMU_MIAO
日期:2021/1/27
摘要
近来深度模型在神经机器翻译(MNT)取得了巨大的进展。然而,MNT在计算昂贵且耗资源。本文中,我们向学习能力强但轻量级的NMT系统迈出了一步。我们提出一种新的基于 g r o u p − p e r m u t a t i o n group{-}permutation group−permutation的知识蒸馏方法来将深的Transformer模型压缩为一个浅的轻量模型。 在多个基准(benchmark)上的实验结果验证了我们方法的有效性。我们的压缩模型比深度模型浅8倍,而BLEU几乎没有损失。为了进一步增强 t e a c h e r teacher teacher模型的性能,我们提出了一种 S k i p p i n g S u b − L a y e r Skipping\,\,Sub{-}Layer SkippingSub−Layer的方法来随机删除子层以引入扰动训练,在WMT14 En-De上获得30.63的BLEU值。
1、Introduction & Motivation
这篇文章从蒸馏的角度提出一种新的基于 g r o u p − p e r m u t a t i o n group{-}permutation group−permutation的蒸馏方法 ( G P K D ) (GPKD) (GPKD)以及一种训练深度 t e a c h e r teacher teacher模型的正则化方法 S k i p p i n g S u b − L a y e r Skipping\,\,Sub{-}Layer SkippingSub−Layer(文中这两种方法都应用在了Encoder端)。基于 g r o u p − p e r m u t a t i o n group{-}permutation group−permutation的蒸馏方法是在 s e q u e n c e − l e v e l d i s t i l l a t i o n ( S K D ) sequence{-}level\,distillation(SKD) sequence−leveldistillation(