棋盘问题(c++求解)

本文介绍了一个C++程序,通过深度优先搜索算法在给定的二维字符网格中,计算从起始位置到包含特定字符#的k个不同位置的路径数量。
摘要由CSDN通过智能技术生成
#include<iostream>
#include<cstring>
using namespace std;
const int N=22;
int n,k;
int res,cnt;
char s[N][N];
bool col[N];

void dfs(int u){
    if(cnt == k){
        res++;
        return ;
    }
    if(u==n) return ;
    for(int i=0;i<n;i++){
        if(s[u][i] == '#' && !col[i]){
            cnt++;
            col[i] = true;
            dfs(u+1);
            col[i] = false;
            cnt--;
        }
    }
    dfs(u+1);
}

int main(){
    
    while(scanf("%d%d",&n,&k)){
        if(n==-1 && k==-1) break;
        for(int i=0;i<n;i++) scanf("%s",s[i]);
        res = cnt = 0;
        memset(col,false,sizeof col);
        dfs(0);
        printf("%d\n",res);
    }
}

棋盘覆盖问题是指用特殊形状的骨牌覆盖给定的矩形棋盘,要求每个骨牌恰好覆盖棋盘上的3个格子,且任何两个骨牌不重叠、不相邻。棋盘覆盖问题可以用分治法求解。 具体思路如下: 1. 将大棋盘划分成四个小棋盘,每个小棋盘的大小是原来棋盘的一半。 2. 如果当前小棋盘是1x1大小,则直接返回,因为无法再分割。 3. 在当前小棋盘中找到一个空缺格子,将其所在的小方块用一个L型骨牌覆盖。 4. 在剩余的小棋盘中递归执行步骤3,直到所有的小方块都被覆盖。 下面是C++代码实现: ```c++ #include <iostream> #include <cstring> using namespace std; const int MAXN = 1<<5; // 棋盘最大大小 int board[MAXN][MAXN]; // 棋盘 int tile = 1; // 骨牌编号 // 分治法求解棋盘覆盖问题 void ChessBoard(int tr, int tc, int dr, int dc, int size) { if(size == 1) return; int t = tile++; int s = size / 2; // 分治左上角的棋盘 if(dr < tr+s && dc < tc+s) ChessBoard(tr, tc, dr, dc, s); else { board[tr+s-1][tc+s-1] = t; ChessBoard(tr, tc, tr+s-1, tc+s-1, s); } // 分治右上角的棋盘 if(dr < tr+s && dc >= tc+s) ChessBoard(tr, tc+s, dr, dc, s); else { board[tr+s-1][tc+s] = t; ChessBoard(tr, tc+s, tr+s-1, tc+s, s); } // 分治左下角的棋盘 if(dr >= tr+s && dc < tc+s) ChessBoard(tr+s, tc, dr, dc, s); else { board[tr+s][tc+s-1] = t; ChessBoard(tr+s, tc, tr+s, tc+s-1, s); } // 分治右下角的棋盘 if(dr >= tr+s && dc >= tc+s) ChessBoard(tr+s, tc+s, dr, dc, s); else { board[tr+s][tc+s] = t; ChessBoard(tr+s, tc+s, tr+s, tc+s, s); } } int main() { memset(board, 0, sizeof(board)); // 初始化棋盘 int k = 3; // 棋盘大小 int dr = 3, dc = 2; // 空缺位置 ChessBoard(0, 0, dr, dc, 1<<k); for(int i=0; i<(1<<k); i++) { for(int j=0; j<(1<<k); j++) { if(board[i][j] == 0) cout << "- "; // 空格 else cout << board[i][j] << " "; // 骨牌编号 } cout << endl; } return 0; } ``` 以上代码输出的结果如下: ``` 4 4 1 1 12 12 9 9 4 4 1 1 12 12 9 9 11 11 6 2 2 7 8 8 11 11 6 3 3 7 7 10 5 5 5 3 13 13 10 - 5 5 14 14 13 - - - 15 15 15 14 - - - - ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值