需要注意的问题

Android 图片加载与依赖管理

一   图片分割

 

String images = listBean.getImages();
String[] split = images.split("\\|");
Glide.with(context).load(split[0]).into(holder.image);

二  presenter

三 constant 常量类

四  用到来的依赖

 

implementation 'com.hjm:BottomTabBar:1.1.1'
implementation 'com.youth.banner:banner:1.4.9'
implementation 'com.github.bumptech.glide:glide:3.7.0'
implementation 'com.squareup.okhttp3:okhttp:3.9.0'
implementation 'com.google.code.gson:gson:2.8.2'
implementation 'com.android.support:recyclerview-v7:27.1.1'
implementation 'com.journeyapps:zxing-android-embedded:3.5.0'
implementation 'com.github.bumptech.glide:glide:3.7.0'
implementation 'com.android.support:multidex:1.0.1'
implementation 'com.nostra13.universalimageloader:universal-image-loader:1.9.5'
implementation 'org.greenrobot:eventbus:3.1.1'
implementation 'com.android.support.constraint:constraint-layout:1.0.2'
implementation 'com.squareup.okhttp3:logging-interceptor:3.9.0'
implementation 'com.jph.takephoto:takephoto_library:4.0.3'
implementation 'com.yanzhenjie:permission:1.0.5'

五  转换

 

Double.parseDouble()
Integer.parseInt() 
 

 

六  防止内存溢出

 public void onDetach(){
        iSearchView = null;

    }

七  XML文件布局时 ,字太多需要设定行数 ,最后没有显示的字用...代替时 , 代码为

 

android:ellipsize="end"     //没显示的字用...代替
android:maxLines="2"      //显示行数为2

 

内容概要:本文详细介绍了一个基于Python实现的锂电池剩余寿命(RUL)预测项目,采用Transformer-LSTM混合深度学习模型,结合GUI界面实现智能化预测与可视化分析。项目涵盖从数据生成、特征工程、模型构建(Transformer自注意力机制与LSTM时序建模融合)、训练优化、性能评估到实际部署的全流程。通过滑动窗口采样、数据归一化、多维度评估指标(MSE、MAE、R²、RMSE、MAPE)及残差分析,确保模型高精度与鲁棒性。同时集成注意力权重与LSTM隐状态可视化功能,提升模型可解释性,并设计了完整的GUI交互系统,支持数据加载、模型热插拔推理与预测结果动态展示。; 适合人群:具备一定Python编程基础和深度学习知识,熟悉PyTorch框架的数据科学从业者、研究生及从事新能源、智能制造、电池管理系统开发的工程师。; 使用场景及目标:①应用于新能源汽车、储能电站、消费电子等领域的电池健康管理;②实现锂电池剩余寿命的高精度动态预测,支持智能运维与故障预警;③为科研人员提供可复现、可扩展的深度学习时序建模实例,推动电池寿命预测技术的工程化落地。; 阅读建议:建议读者结合代码与文档逐步实践,重点关注数据预处理、模型结构设计与GUI集成部分,尝试在本地环境中运行并调试程序,深入理解Transformer与LSTM协同工作机制,同时可扩展多模态输入或轻量化部署以适应更多应用场景。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值