运动训练中增加负荷如何改变肌群协同?这与我们大脑皮层激活有关吗?

524ec93bf60f15f7e115884f18713888.png

跑步时增加负荷(比如,给双腿绑上沙袋)有什么好处?它可以改善我们的步态、肌肉力量等。对于中风、脑瘫等神经系统疾病患者来说也是如此。

我们可以通过运动训练来帮助中风、脑瘫等神经系统疾病患者改善运动缺陷。而在训练过程中施加负荷(如重量和松紧带),可以为患者在步态、肌肉力量等方面带来额外的好处。

106b72509fec9bbc1afc03a5ff24886e.png

图片来源网络(侵权请告知删除)

之前的研究已表明,额外负荷的治疗效果可以部分解释为非神经系统的改善,如肌肉质量、肌肉耐力、心脏代谢适应度的增加等。而训练过程中机械负荷的作用可能主要体现在对负荷的神经反应上。已有研究发现在大程度上肢运动中额外增加惯性负荷会引出运动相关区域更高水平的激活。此外,额外负荷会降低运动速度和推迟主动肌肌电峰值出现的时间。

在神经康复中,患者克服运动负荷进行训练时,运动表现可能会改善。惯性负荷增加会引发运动相关脑皮层的线性响应,但大脑皮层反应与肌肉模式变化的关系尚不清楚。额外惯性负荷是否改变肌肉的协同,它与皮层激活是否有关,这些问题还需进一步探索。

5ad66ed3598a0fdc38b6a92aaad1a517.png

为进一步探索惯性负荷、肌群协同和皮层激活之间的关系,本研究中做了一些假设,增加的惯性负荷会改变肌群协同,而肌群协同相似度可能与功能性近红外光谱(fNIRS)皮层响应相关。为验证这些假设,弄清楚这些难点,上海交通大学医学院和新加坡陈笃生医院等单位的研究人员进行了相关的研究。该研究结果近期被发表在了由北京理工大学主办的Cyborg and Bionic Systems 期刊中。

# 数据采集

fNIRS脑血流动力学数据采集:使用多通道fNIRS设备捕获脑血流动力学信号。根据脑区功能,将对侧Brodmann Area 4 (BA4)和Brodmann Area 6 (BA6)确定为感兴趣区域(ROI)。

fNIRS设备采用高密度3 × 10盖板排布,其中包含16个发射器和14个探测器,形成44个通道,覆盖两个半球的BA4和BA6(图1C)。实验中将探头的前边缘与颅骨的冠状面对齐。三维磁性空间数字化仪(Polhemus Patriot, Polhemus Inc., Vermont, USA)在扫描后测量通道的位置。图1D描绘了一次访问的实验流程图。探头配置如图2A所示。

表面肌电信号的获取:使用无线EMG系统捕获表面肌电信号。肌电传感器分别放置在胸大肌、三角肌前束、三角肌后束、肱二头肌、肱三头肌长头、肱桡肌、肱三头肌外侧头和冈下肌8块肌肉的腹部。肌电传感器的放置如图2B所示。

db5ac84c0f21599c78550440325b9c0b.png

图1. 实验设计。(A)实验的实际场景。受试者坐在允许上肢自由活动的无扶手椅上。实验前放置肌电传感器和fNIRS盖板。(B)侧提运动,受试者按要求将哑铃举到腋下。(C) 3 × 10高密度fNIRS探针。发射器是红色的,探测器是蓝色的。通道间隔1.5 cm,完全覆盖两侧运动相关区域。(D)一次访问的实验流程图。(E)侧提运动设计。0表示0磅状态(即无额外负载)。

d02a467ab15f4f3a02499e654d1a8803.png

图2. 近红外通道定位和表面肌电示意图。(A)空间位置。根据配准概率,红色矩形通道位于BA4(通道6、7、8、15、16、17、18),蓝色矩形通道位于BA6(通道24、25、26、33、34、35、36)。(B)肌电传感器的放置。在经验丰富的治疗师的监督下,肌电传感器分别放置在胸大肌、三角肌前束、三角肌后束、肱二头肌、肱三头肌长头、肱桡肌、肱三头肌外侧头和冈下肌的肌腹。

# 结果分析

研究人员通过处理fNIRS和肌电信号,从以下几个方面进行结果展示:

惯性负荷对肌群协同的影响:使用非负矩阵分解将原始肌电信号分解为时不变的肌肉协同向量和时变的激活系数,以揭示肌群协同。图3展示了代表性的肌群协同。第一个协同(绿色)中,后三角肌的贡献最大;第二个协同(黄色)中,肱二头肌的影响最大且更均匀分布;第三个协同(蓝色)中,前三角肌的贡献最大。此外,随着惯性负荷增加,肌群协同的激活水平也增加。这些结果支持了惯性负荷对肌群协同的影响,并提供了可视化证据。

6ee565f24627487884d769c84d5a4480.png

图3. 从个体身上提取的肌群协同。(A) 0磅条件下的协同矢量及其对应的时间曲线。(B) 3磅条件下的协同矢量和相应的时间曲线。(C) 15磅条件下的协同矢量和相应的时间曲线。肌肉从上到下:IS,冈下肌;PC,胸大肌;三头肌长头;BR,肱桡肌;DP,三角肌后;DA,前三角肌;三头肌长头;BI,二头肌。不同的颜色代表不同的肌群协同。

计算每个个体上提取的肌群协同与基协同之间的协同向量相似度;相似度的代表性计算如图4所示。较高的相似度意味着协同向量通常更接近基线。

7cffca41c6bbce97d3c74c450bba1c18.png

图4. 相似度的计算。从0磅受试者03中提取的肌群协同被选为基础协同。所有集群协同按VAF降序排序。总体相似度等于接近度之和,并由相应重构肌电信号矩阵的特征值的贡献加权。

采用线性混合效应模型分析了负荷大小与协同相似度之间的关系。如图5所示,在负斜率的情况下,发现了显著的负相关,这意味着z变换后的相似性每磅降低0.0287。

f2589dbba9dad242deca30c5bf51a9c5.png

图5. 采用带随机截距的线性混合效应模型拟合荷载对协同相似性的影响。结果表明,肌群协同控制策略在不同负载量级之间存在显著的负相关。(A)所有受试者的样本回归线显示了总体趋势。(B)所有受试者的样本回归线,显示合并后的数据。

肌群协同与皮层激活的关系:肌电图和近红外光谱信号对齐,以捕捉外周和中枢神经系统的变化。0,3和15磅条件下的组合信号如图6所示。惯性负荷的增加导致表面肌电信号和血流动力学信号的振幅增大。

053d261774150418d1c4ed3dde4f80e4.png

图6. 一个代表性受试者的表面肌电图和近红外光谱血流动力学信号。双Y轴图显示0磅(A)、3磅(B)和15磅(C)情况下8通道(位于BA4)、24通道(位于BA6)和后三角肌线性包膜(主要主动肌)的血流动力学信号;左Y轴表示氧合血红蛋白密度,右Y轴表示表面肌电信号。

采用随机截距的线性混合效应模型分析z-变换后的肌群协同相似度与位于BA4的4个通道的beta系数之间呈现显著的负相关。位于BA4的7个通道中有4个通道(CH7、8、15和18)在z-转换协同相似性和β系数之间表现出显著的线性相关性,且斜率为负。位于BA6的7个通道中有4个(CH24、25、26和36)在协同相似性和β系数之间表现出显著的线性相关性。代表性通道如图7所示。

163aadc26fb561340ca0be34d921c5dc.png

图7. 协同相似性与β系数的相关性。使用一般线性模型(随机截距)拟合协同相似性和β系数之间的线性关系。本研究发现了显著的负相关,表明负荷大小对中枢神经系统和肌肉系统都有影响。(A)CH8,位于BA4。(B) CH24,位于BA6。

采用随机截距的线性混合效应模型来分析两种ROI中协同相似性和β系数之间的关系。如图8A所示,相似性与β之间存在显著的相关关系;z变换后的协同相似性每单位β降低4.855。在BA6中,z变换后的协同相似性每单位β降低6.711。线性模型显示,BA6的线性趋势强于BA4(图8B)。

0509cb854b7663b786a1f29ff1b48dcb.png

图8. 肌群协同相似性和皮层激活之间的ROI相关性。本研究绘制了简单的回归线来显示总体趋势。使用一般线性模型(随机截距)拟合协同相似性和β之间的线性关系。(A) BA4的相关性。(B) BA6的相关性。

# 结论讨论

在这项研究中,研究人员使用近红外光谱和表面肌电图研究了负荷对外周和中枢神经系统的影响。最终结果显示,负荷的增加导致肌群协同相似度降低,且其与皮层激活程度呈现显著负相关,说明负荷特定的肌肉控制策略。

该项研究验证了研究人员在前面提到的假设:惯性负荷对肌群协同的影响,而且皮质反应和协同向量变化具有线性相关性。这些发现有助于了解神经和肌肉系统对逐渐加重负荷的反应,并为康复目标设定提供新的基准。

参考文献:

https://spj.science.org/doi/10.34133/cbsystems.0033

—— End ——

仅用于学术分享,若侵权请留言,即时删侵!

更多阅读

格拉斯哥大学中国博士生提出计算鬼成像架构

专家观点:最近Neuralink FDA IDE的真正含义是什么?

植入式脑机接口技术的医疗器械之路

LMDA-Net第一作者亲自讲述其设计思想

伸手运动想象训练与伸手抓取想象的关系

81f94c0fb8d332a473cca0d1604c85f5.png

   加入社群  

欢迎加入脑机接口社区交流群,

探讨脑机接口领域话题,实时跟踪脑机接口前沿。

加微信群:

添加微信:RoseBrain【备注:姓名+行业/专业】。

加QQ群:913607986

  欢迎来稿  

1.欢迎来稿。投稿咨询,请联系微信:RoseBrain

2.加入社区成为兼职创作者,请联系微信:RoseBrain

8355894b89818cfd642525a37c4f2b03.png

25fc5f83447660a0536c227cbe211c9e.jpeg

5165204f7bd49aed26be7178a8df1cec.png

一键三连「分享」、「点赞」和「在看」

不错每一条脑机前沿进展 ~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

脑机接口社区

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值