脑机接口(Brain-Computer Interface,BCI)是一种用于大脑与外部设备(如计算机、机器人)直接交互的技术,能够研究、辅助、增强或恢复人类的认知或感觉运动功能。本文聚焦于基于脑电图(Electroencephalogram,EEG)的运动想象(Motor Imagery,MI)分类,这是BCI中的经典范式之一。MI通过想象身体某部位的运动而不实际操作,引发EEG信号中的能量分布变化。
要训练具有良好泛化能力的MI分类器,通常需要大量受试者的EEG数据。然而,研究发现基于EEG的BCI存在隐私风险,如EEG数据可能泄露用户的私人信息,包括个人偏好、健康状况和精神状态等。由于法律法规的要求和用户的隐私顾虑,BCI中的隐私保护机器学习变得至关重要。
联邦学习(Federated Learning,FL)是一种潜在的解决方案。用于隐私保护BCI的FL系统如图1所示:中央服务器(无法访问本地客户端的私人EEG数据)维护并发送全局模型给各客户端进行更新;每个客户端根据自己的本地数据更新全局模型参数,并将更新结果发送回服务器进行汇总。通过这种方式,无需在服务器与客户端之间或客户端之间共享EEG数据,即可完成全局模型的训练。FL通过防止其他设备访问存储在本地客户端的原始数据,有效地保护了用户隐私,避免了集中式数据集带来的隐私风险。
图 1 隐私保护BCI的FL系统
由于脑电数据中不同用户之间差异较大,常规的联邦学习算法在BCI应用中表现不佳。本文作者提出了FedBS方法,其框架如图2所示。具体而言,FedBS通过使用本地特定批次归一化(batch-specific BN),为BN层计算特定批次数据的统计值,并对该数据进行归一化,从而减少不同客户端之间的特征偏移(即不同用户数据的差异)。此外,FedBS在客户端的本地训练中引入了锐度感知最小化(Sharpness-aware Minimization,SAM)优化器,以促使模型收敛到更平坦的损失最小值,从而提高模型的泛化能力。
图 2 FedBS算法
本文在三个MI公开数据集中,使用三个常用的深度神经网络进行了实验,并分别对比了集中式训练(CT,有隐私泄露风险)与六种常用的FL方法。未使用欧氏对齐(Euclidean Alignment,EA)的结果如表1所示,使用EA的结果如表2至表4所示。实验结果表明:
FedBS的表现优于其他六种常用FL方法,甚至在绝大多数情况下优于未考虑隐私保护的集中式训练方法。这表明,FedBS不仅有效保护了隐私,还提升了解码精度。
EA 提高了包括 FedBS 在内的所有方法的性能。平均而言,当使用 EA 后,FedBS 的表现比 CT 高出 1.97%,比排名第二的 FL 方法高出 3.08%。
表1 未使用EA三个数据集跨被试准确率
表2 使用EA后MI1数据集跨被试准确率
表3使用EA后MI2数据集跨被试准确率
表4 使用EA后MI3数据集跨被试准确率
图3展示了在MI2数据集中,使用CT、FedAvg(FL中最典型的方法)和FedBS对一位测试受试者提取特征的t-SNE可视化效果。表5则列出了CT、FedAvg和FedBS从三个数据集中的各个测试受试者提取特征后计算的平均广义判别值。该指标的范围为[-1, 0],用于量化神经网络特征的可分离性,数值越低表示特征的可分离性越好。结果显示,FedBS的特征分离度明显优于其他方法。这是因为FedBS通过本地特定批次归一化对不同受试者的样本进行对齐,减少了分布差异,从而提升了测试受试者的分类性能。
图 3 MI2 数据集测试被试提取特征的 t-SNE 可视化。(a) CT;(b) FedAvg;(c) FedBS
表5 三个数据集 CT、FedAvg 和 FedBS 提取特征计算的平均广义判别值。
本文提出了在基于EEG的MI分类中保护隐私的FedBS方法。实验结果表明,FedBS的性能优于多种先进的FL方法以及未考虑隐私保护的集中式训练方法。FedBS 可以保护用户的数据隐私,让多个 BCI用户参与大规模机器学习模型训练,从而提升BCI解码的准确性,这对推动BCI在现实世界中的应用具有重要价值。
参考文献:
T. Jia, L. Meng, S. Li, J. Liu and D. Wu, “Federated Motor Imagery Classification for Privacy-Preserving Brain-Computer Interfaces”, IEEE Trans. on Neural Systems and Rehabilitation Engineering, early access, 2024.
开源代码:https://github.com/TianwangJia/FedBS
仅用于学术分享,若侵权请留言,即时删侵!
加入社群
欢迎加入脑机接口社区交流群,
探讨脑机接口领域话题,实时跟踪脑机接口前沿。
加微信群:
添加微信:RoseBCI【备注:姓名+行业/专业】。
加QQ群:913607986
欢迎来稿
1.欢迎来稿。投稿咨询,请联系微信:RoseBCI
点击投稿:脑机接口社区学术新闻投稿指南
2.加入社区成为兼职创作者,请联系微信:RoseBCI
一键三连「分享」、「点赞」和「在看」
不错过每一条脑机前沿进展