近日,山东大学集成电路学院的周卫东教授团队提出了一种新型的细粒度多尺度时频空运动想象脑机接口框架,有效提升了运动想象脑机接口(MI-BCI)的分类性能及模型解释性。相关研究成果以“Fine-Grained Spatial-Frequency-Time Framework for Motor Imagery Brain-Computer Interface”为题,发表于生物医学工程领域重要期刊《IEEE Journal of Biomedical and Health Informatics》。山东大学集成电路学院为论文署名单位,刘国洋助理研究员为论文第一作者,田岚教授和周卫东教授为通讯作者。
运动想象脑机接口通过实时解码人类运动想象任务中的脑电(EEG)信号,旨在实现基于“意念”的人机交互,被广泛应用于神经康复和辅助诊疗。然而,以往的MI-BCI算法通常在时域和频域进行粗粒度分割以提取脑电特征,而且空域特征往往依靠共空间模式滤波器进行提取。这使得MI-BCI难以充分挖掘脑电信号的细粒度时频空域的神经振荡模式,制约了MI-BCI系统的性能和可解释性。
为突破这些瓶颈,该团队提出了一种如图1所示的细粒度多尺度时频空MI-BCI框架(FGSFT),实现了EEG空域、频域和时域的多尺度精细化联合分割。如图2所示,团队提出了结合手工设计和自动选择的多种电极组空间分割策略来获取脑电特征的多尺度空间信息。同时,通过细粒度多尺度时间窗口(最短200ms)和频带分割(最窄频带4Hz)策略,精确地捕捉脑电信号的细粒度时频域动态变化。为减少模型复杂度同时增强模型的可解释性,设计了基于wrapper算法的时频空特征选择策略,自动筛选出空域、频域、时域中的关键时频空特征片段(SFTSs),结合带类内正则化的散度公共空间模式(divCSP)算法提取稳定的运动想象脑电多尺度细粒度时频空特征,最后采用高效的线性支持向量机分类器进行分类。
图1 细粒度多尺度时频空运动想象脑机接口框架
图2 运动想象脑电的时-频-空域分割策略。(a)时域分割策略;(b)频域分割策略;(c)空域分割策略。
研究团队采用BCI国际标准公开数据集(BCI Competition IV-IIa)和自主构建的SDU-MI数据集上开展了深入的实验验证。在BCI IV IIa数据集中,所提方法取得了88.48%的二类平均分类准确率,当使用0-1.5秒的脑电数据片段时,信息传输率(ITR)可达15.64比特/分钟。团队还采集了一个包括手部和肘部运动想象范式的SDU-MI脑电数据库,在该数据库中所提出的方法在不同的运动想象任务(左手对右手、左肘对右肘、手肘联合动作对比)中分别达到了80.80%、76.95%和78.25%的分类准确率,体现出优异的泛化能力和稳健性。如表1所示,团队测试了不同时频空分割策略下、不同运动想象范式下所提出的MI-BCI框架在SDU-MI数据库上的性能。结果显示时频空域分割策略下能达到最高的综合准确率,而且空域分割策略能显著提升MI-BCI的性能。
表1不同时频空分割策略、不同运动想象范式下所提出框架在SDU-MI数据库上的平均准确率。其中S,F,T分别代表使用空域、频域、时域分割;H,E,HE分别代表想象手部、肘部、手肘部同时运动的运动想象范式。
此外,研究团队基于所提出的MI-BCI框架可绘制出高分辨率的细粒度运动想象EEG时频响应图(如图3所示)、时频脑电地形图和通道组显著性图(如图4所示)。这些可视化图形不仅展现了不同受试者在运动想象任务中的个体化差异,还清晰揭示了脑电信号的时域、频域、空域的多维动态变化过程,有效提升了所设计的脑机接口模型的电生理可解释性,为深入理解运动想象的神经机制及发展精准的个性化脑机接口系统提供了有效工具和新的视角。
图3 在BCI Competition IV-IIa数据库(A-1至A-9)以及SDU-MI数据库(B-1至B-10)上的细粒度运动想象时频反应图。
图4 细粒度时频脑电地形图和通道组显著图。(a) BCI Competition IV IIa 数据集中第 8 名受试者的细粒度时频脑电地形图(左)及通道组显著图(右)。(b) SDU-MI 数据集中第 1 名受试者的细粒度时频脑电地形图(左)及通道组显著图(右)。
仅用于学术分享,若侵权请留言,即时删侵!
加入社群
欢迎加入脑机接口社区交流群,
探讨脑机接口领域话题,实时跟踪脑机接口前沿。
加微信群:
添加微信:RoseBCI【备注:姓名+行业/专业】。
加QQ群:913607986
欢迎来稿
1.欢迎来稿。投稿咨询,请联系微信:RoseBCI
点击投稿:脑机接口社区学术新闻投稿指南
2.加入社区成为兼职创作者,请联系微信:RoseBCI
一键三连「分享」、「点赞」和「在看」
不错过每一条脑机前沿进展