10种软件滤波方法的示例程序

10种软件滤波方法的示例程序

1、限幅滤波法(又称程序判断滤波法)

A、方法:

根据经验判断,确定两次采样允许的最大偏差值(设为A)

每次检测到新值时判断:

如果本次值与上次值之差<=A,则本次值有效

如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值

B、优点:

能有效克服因偶然因素引起的脉冲干扰

C、缺点

无法抑制那种周期性的干扰

平滑度差

2、中位值滤波法

A、方法:

连续采样N次(N取奇数)

把N次采样值按大小排列

取中间值为本次有效值

B、优点:

能有效克服因偶然因素引起的波动干扰

对温度、液位的变化缓慢的被测参数有良好的滤波效果

C、缺点:

对流量、速度等快速变化的参数不宜

3、算术平均滤波法

A、方法:

连续取N个采样值进行算术平均运算

N值较大时:信号平滑度较高,但灵敏度较低

N值较小时:信号平滑度较低,但灵敏度较高

N值的选取:一般流量,N=12;压力:N=4

B、优点:

适用于对一般具有随机干扰的信号进行滤波

这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动

C、缺点:

对于测量速度较慢或要求数据计算速度较快的实时控制不适用

比较浪费RAM

4、递推平均滤波法(又称滑动平均滤波法)

A、方法:

把连续取N个采样值看成一个队列

队列的长度固定为N

每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则)

把队列中的N个数据进行算术平均运算,就可获得新的滤波结果

N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4

B、优点:

对周期性干扰有良好的抑制作用,平滑度高

适用于高频振荡的系统

C、缺点:

灵敏度低

对偶然出现的脉冲性干扰的抑制作用较差

不易消除由于脉冲干扰所引起的采样值偏差

不适用于脉冲干扰比较严重的场合

比较浪费RAM

5、中位值平均滤波法(又称防脉冲干扰平均滤波法)

A、方法:

相当于“中位值滤波法”+“算术平均滤波法”

连续采样N个数据,去掉一个最大值和一个最小值

然后计算N-2个数据的算术平均值

N值的选取:3~14

B、优点:

融合了两种滤波法的优点

对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差

C、缺点:

测量速度较慢,和算术平均滤波法一样

比较浪费RAM

6、限幅平均滤波法

A、方法:

相当于“限幅滤波法”+“递推平均滤波法”

每次采样到的新数据先进行限幅处理,

再送入队列进行递推平均滤波处理

B、优点:

融合了两种滤波法的优点

对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差

C、缺点:

比较浪费RAM

7、一阶滞后滤波法

A、方法:

取a=0~1

本次滤波结果=(1-a)*本次采样值+a*上次滤波结果

B、优点:

对周期性干扰具有良好的抑制作用

适用于波动频率较高的场合

C、缺点:

相位滞后,灵敏度低

滞后程度取决于a值大小

不能消除滤波频率高于采样频率的1/2的干扰信号

8、加权递推平均滤波法

A、方法:

是对递推平均滤波法的改进,即不同时刻的数据加以不同的权,通常是,越接近现时刻的数据,权取得越大。

给予新采样值的权系数越大,则灵敏度越高,但信号平滑度越低

B、优点:

适用于有较大纯滞后时间常数的对象和采样周期较短的系统

C、缺点:

对于纯滞后时间常数较小,采样周期较长,变化缓慢的信号不能迅速反应系统当前所受干扰的严重程度,滤波效果差

9、消抖滤波法

A、方法:

设置一个滤波计数器

将每次采样值与当前有效值比较:

如果采样值=当前有效值,则计数器清零

如果采样值<>当前有效值,则计数器+1,并判断计数器是否>=上限N(溢出)

如果计数器溢出,则将本次值替换当前有效值,并清计数器

B、优点:

对于变化缓慢的被测参数有较好的滤波效果,

可避免在临界值附近控制器的反复开/关跳动或显示器上数值抖动

C、缺点:

对于快速变化的参数不宜

如果在计数器溢出的那一次采样到的值恰好是干扰值,则会将干扰值当作有效值导入系统

10、限幅消抖滤波法

A、方法:

相当于“限幅滤波法”+“消抖滤波法”

先限幅,后消抖

B、优点:

继承了“限幅”和“消抖”的优点

改进了“消抖滤波法”中的某些缺陷,避免将干扰值导入系统

C、缺点:

对于快速变化的参数不宜

10种软件滤波方法的示例程序(JKRL)

假定从8位AD中读取数据(如果是更高位的AD可定义数据类型为int),子程序为get_ad();

1、限副滤波

/* A值可根据实际情况调整

value为有效值,new_value为当前采样值

滤波程序返回有效的实际值 */

#define A 10

char value;

char filter()

{

char new_value;

new_value = get_ad();

if ( ( new_value - value > A ) || ( value - new_value > A )

return value;

return new_value;

}

2、中位值滤波法

/* N值可根据实际情况调整

排序采用冒泡法*/

#define N 11

char filter()

{

char value_buf[N];

char count,i,j,temp;

for ( count=0;count {

value_buf[count] = get_ad();

delay();

}

for (j=0;j {

for (i=0;i {

if ( value_buf>value_buf[i+1] )

{

temp = value_buf;

value_buf = value_buf[i+1];

value_buf[i+1] = temp;

}

}

}

return value_buf[(N-1)/2];

}

3、算术平均滤波法

/*

*/

#define N 12

char filter()

{

int sum = 0;

for ( count=0;count {

sum + = get_ad();

delay();

}

return (char)(sum/N);

}

4、递推平均滤波法(又称滑动平均滤波法)

/*

*/

#define N 12

char value_buf[N];

char i=0;

char filter()

{

char count;

int sum=0;

value_buf[i++] = get_ad();

if ( i == N ) i = 0;

for ( count=0;count sum = value_buf[count];

return (char)(sum/N);

}

5、中位值平均滤波法(又称防脉冲干扰平均滤波法)

/*

*/

#define N 12

char filter()

{

char count,i,j;

char value_buf[N];

int sum=0;

for (count=0;count {

value_buf[count] = get_ad();

delay();

}

for (j=0;j {

for (i=0;i {

if ( value_buf>value_buf[i+1] )

{

temp = value_buf;

value_buf = value_buf[i+1];

value_buf[i+1] = temp;

}

}

}

for(count=1;count sum += value[count];

return (char)(sum/(N-2));

}

6、限幅平均滤波法

/*

*/

参考子程序13

7、一阶滞后滤波法

/* 为加快程序处理速度假定基数为100a=0~100 */

#define a 50

char value;

char filter()

{

char new_value;

new_value = get_ad();

return (100-a)*value + a*new_value;

}

8、加权递推平均滤波法

/* coe数组为加权系数表,存在程序存储区。*/

#define N 12

char code coe[N] = {1,2,3,4,5,6,7,8,9,10,11,12};

char code sum_coe = 1+2+3+4+5+6+7+8+9+10+11+12;

char filter()

{

char count;

char value_buf[N];

int sum=0;

for (count=0,count {

value_buf[count] = get_ad();

delay();

}

for (count=0,count sum += value_buf[count]*coe[count];

return (char)(sum/sum_coe);

}

9、消抖滤波法

#define N 12

char filter()

{

char count=0;

char new_value;

new_value = get_ad();

while (value !=new_value);

{

count++;

if (count>=N) return new_value;

delay();

new_value = get_ad();

}

return value;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值