pytorch
markrenton94
我为什么要写?
展开
-
torch.device作用
torch.device代表将torch.Tensor分配到的设备的对象。torch.device包含一个设备类型(‘cpu’或‘cuda’)和可选的设备序号。如果设备序号不存在,则为当前设备。如:torch.Tensor用设备构建‘cuda’的结果等同于‘cuda:X’,其中X是torch.cuda.current_device()的结果。https://ptorch.com/news/187...转载 2019-07-18 17:35:58 · 52530 阅读 · 2 评论 -
pytorch中view
view函数旨在reshape张量形状。参数-1是什么意思?如果你不知道你想要多少行,但确定列数,那么你可以将行数设置为-1(你可以将它扩展到具有更多维度的张量。只有一个轴值可以是-1)。这是告诉系统Library:给我一个具有这么多列的张量,并计算实现这一点所需的适当行数。view方法返回张量与self张量相同的数据(这意味着返回的张量具有相同数量的元素),但具有不同的形状。例...转载 2019-07-17 19:10:38 · 204 阅读 · 0 评论 -
pytorch中nn.ReLU和F.ReLU的区别
实际计算结果一致。不同的是nn.ReLU作为一个层结构,必须添加到nn.Module容器中才能使用,而F.ReLU则作为一个函数调用。https://blog.csdn.net/u011501388/article/details/86602275...转载 2019-07-17 19:37:14 · 4956 阅读 · 0 评论 -
pytorch中F.relu中的inplace操作作用
inplace operation在pytorch中是指改变一个tensor的值的时候,不经过复制操作,而是直接在原来的内存上改变它的值。设置inplace=True,计算结果不会有影响。利用in-place计算可以节省内(显)存,同时还可以省去反复申请和释放内存的时间。但是会对原变量覆盖,只要不带来错误就用。https://blog.csdn.net/qq_35608277/article/d...转载 2019-07-17 19:58:07 · 3041 阅读 · 0 评论