多类svm

1.一对多(one-versus-one)

       速度较快,但是存在缺陷。


2.一对一(one-versus-one)

       有K个类,则两两一对构造k(k-1)/2个分类器,把待分对象用这些分类器进行判别,最后使用投票法,得票多的类别为最终类别。分类时要使用全部模型进行判别,速度慢,且存在拒分(多种类别得票相同时)。


3.有向无环图(DAG-SVM)

       类别数增加时,速度快于前两者,且简单易行,对于一般规模的多类分类问题行之有效。是基于一对一方式的优化,不会出现拒分。

       假设有A,B,C,D四个类别,首先两两之间训练k(k-1)/2个模型。


       对未知对象,首先用A-D模型分类,若分为A,则用A-C模型继续分类,若分为D,则用B-D模型继续分类,采用如图所示路线持续往下分类,得到最终类别。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值