图像处理笔试题面试题

图像处理笔试题面试题
1、相机标定的几个参数
答:第一步从世界坐标系转换为相机坐标系,从三维点到三维点的转换,包括R,t(相机外参)等参数;第二步是(投影变换)从相机坐标系转换为成像平面坐标系(像素坐标系),这一步是三维点到二维点的转换,包括K(相机内参)等参数。P=K[R|t]。第三步:成像平面坐标系->像素坐标系,平面坐标系物理单位到像素单位。计算机视觉中, 摄像机内参数矩阵K:其中f为摄像机的焦距,单位是一般mm;dx,dy为像元尺寸;u0,v0为图像中心。fx=f/dx,fy=f/dy,分别称为x轴上和y轴上的归一化焦距。注意:两种畸变对投影图像影响较大:径向畸变和切向畸变。 平移向量(tx,ty,tz)。
摄像机的外参数: 旋转向量(大小为1×3的矢量或旋转矩阵3×3),  平 向量(tx,ty,tz)r就是旋转向量,旋转向量的方向是旋转轴 ,旋转向量的模为围绕旋转轴旋转的角度
2、 HOUGH变换的原理是?HOUGH 变换用在检测圆上应该怎么做?怎么加速检测圆?
答:霍夫变换的原理是通过利用点与线的对偶性,将原始图像给定的曲线通过曲线表达形式变为参数空间的一个点。这样就把原始空间对给定曲线的检测问题转化为寻找参数空间的峰值问题。
      检测圆步骤:将直角坐标系映射到参数空间,统计(a,b,r)出现的次数。相同的(a,b,r)说明两点共圆,找到次数最多的(a,b,r)说明这个圆上的点最多,
3、81的互质数是几个?
答:53个
4、图像SIFT特征的步骤
答:尺度空间极值点检测、关键点定位、关键点方向参数的确定、关键点描述子的生成。
5、深度学习核函数
答:核函数是 可以计算两个向量的相似度用来计算映射到高维空间之后的内积的一种简便方法。核函数必须满足对称性和半正定性。。某些在低维空间不可分,到了高维空间可能可分。比如 高斯核函数。是一种径向基函数
多项式核函数、感知器核函数、样条核函数、
6、深度学习激活函数
答:深度学习激活函数定义: 激活函数是映射h:R->R,且几乎处处可导。典型激活函数: sigmod函数:f(x)=1/(1+e^(-x)); tanh函数:tanh(x)=(1-e^(-2x))/(1+e^(-2x)); Relu函数:;还有Prelu函数;Maxout函数:ELU函数:CRelu函数; MPELU函数。
7、深度学习算法问题
8、生成式模型。
答: SVM、HMM、LR、ANN。HMM是隐形马尔科夫模型。LR是逻辑回归;ANN是人工神经网络。
9、无监督模型和有监督模型
答:无监督模型包括:1) LDA(Latent Dirichlet Allocation)是隐含狄里克雷模型,一种文档生成模型, 非监督的机器学习模型,并且使用了词袋模型;2) 线性判别分析LDA是有监督模型, 它先对训练数据进行降维,然后找出一个线性判别函数;3) 
10、 图像处理中边缘检测算法sobel与canny在应用上有什么区别?
答:sobel是基于梯度图像模值大小的检测算子,通常有水平和垂直两种算子。
canny算法实际上是将sobel算子应用两次,取不同于阈值,一个是低阈值,低阈值要包含像素全部的重要边缘,高阈值要尽量将全部的非重要边缘去除。首先进行去噪,寻找亮度梯度,使用滞后阈值进行,canny算子适合于用于不同的场合,不过速度较慢。 它的参数允许根据不同实现的特定要求进行调整以识别不同的边缘特性
sobel算子是其滤波算子的形式,用于提取边缘,可以利用快速卷积函数。但是sobel算子没有将图像主体与背景严格区分开来,没有基于图像灰度进行处理。
数字图像处理面试题通常涉及以下几个方面的内容: 1. 图像处理基础知识:包括灰度图像、彩色图像、二值图像和索引图像的区别,常用的图像处理方法和算子,如均值滤波、中值滤波、高斯滤波、Sobel算子、拉普拉斯算子等等。 2. 特征提取与目标检测:常用的特征提取方法和目标检测算法,如SIFT、HOG、Haar特征、卷积神经网络等,以及它们在目标检测中的应用。 3. 图像分割与边缘提取:常用的图像分割算法,如阈值分割、边缘检测、区域生长算法等,以及如何提取图像的边缘信息。 4. 插值方法与图像缩放:常用的插值方法,如最近邻插值、双线性插值、双三次插值等,以及如何实现图像的放大和缩小。 5. 数字图像识别与深度学习:数字图像识别的流程,包括特征提取、分类器的选择和训练等。深度学习中常用的目标检测方法,如RCNN、YOLO、SSD等,以及深度学习与传统机器学习算法的区别。 6. C语言编程:与图像处理相关的C语言编程题目,如图像的读取与存储、图像的预处理、算法的实现等。 7. 其他问题:深入了解各种算法的细节,如神经网络、SVM、AdaBoost、kNN等,以及过拟合和欠拟合的定义和改善方法。 以上是数字图像处理面试题中常见的一些问题。建议准备这些知识点,并根据实际情况进行深入学习和准备。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [图像处理笔试面试题](https://blog.csdn.net/xingchenbingbuyu/article/details/78784654)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [图像处理-最常见面试题(必问)](https://blog.csdn.net/cc13186851239/article/details/114290940)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值