图像处理笔试题面试题
1、相机标定的几个参数
答:第一步从世界坐标系转换为相机坐标系,从三维点到三维点的转换,包括R,t(相机外参)等参数;第二步是(投影变换)从相机坐标系转换为成像平面坐标系(像素坐标系),这一步是三维点到二维点的转换,包括K(相机内参)等参数。P=K[R|t]。第三步:成像平面坐标系->像素坐标系,平面坐标系物理单位到像素单位。计算机视觉中,
摄像机内参数矩阵K:其中f为摄像机的焦距,单位是一般mm;dx,dy为像元尺寸;u0,v0为图像中心。fx=f/dx,fy=f/dy,分别称为x轴上和y轴上的归一化焦距。注意:两种畸变对投影图像影响较大:径向畸变和切向畸变。
和平移向量(tx,ty,tz)。
摄像机的外参数:
旋转向量(大小为1×3的矢量或旋转矩阵3×3),
平
移向量(tx,ty,tz) 。
r就是旋转向量,旋转向量的方向是旋转轴 ,旋转向量的模为围绕旋转轴旋转的角度
2、
HOUGH变换的原理是?HOUGH 变换用在检测圆上应该怎么做?怎么加速检测圆?
答:霍夫变换的原理是通过利用点与线的对偶性,将原始图像给定的曲线通过曲线表达形式变为参数空间的一个点。这样就把原始空间对给定曲线的检测问题转化为寻找参数空间的峰值问题。
检测圆步骤:将直角坐标系映射到参数空间,统计(a,b,r)出现的次数。相同的(a,b,r)说明两点共圆,找到次数最多的(a,b,r)说明这个圆上的点最多,
3、81的互质数是几个?
答:53个
4、图像SIFT特征的步骤
答:尺度空间极值点检测、关键点定位、关键点方向参数的确定、关键点描述子的生成。
5、深度学习核函数
答:核函数是
可以计算两个向量的相似度,用来计算映射到高维空间之后的内积的一种简便方法。核函数必须满足对称性和半正定性。。某些在低维空间不可分,到了高维空间可能可分。比如
高斯核函数。是一种径向基函数
多项式核函数、感知器核函数、样条核函数、
6、深度学习激活函数
答:深度学习激活函数定义:
激活函数是映射h:R->R,且几乎处处可导。典型激活函数:
sigmod函数:f(x)=1/(1+e^(-x));
tanh函数:tanh(x)=(1-e^(-2x))/(1+e^(-2x));
Relu函数:;还有Prelu函数;Maxout函数:ELU函数:CRelu函数;
MPELU函数。
7、深度学习算法问题
8、生成式模型。
答:
SVM、HMM、LR、ANN。HMM是隐形马尔科夫模型。LR是逻辑回归;ANN是人工神经网络。
9、无监督模型和有监督模型:
答:无监督模型包括:1)
LDA(Latent Dirichlet Allocation)是隐含狄里克雷模型,一种文档生成模型,
非监督的机器学习模型,并且使用了词袋模型;2)
线性判别分析LDA是有监督模型,
它先对训练数据进行降维,然后找出一个线性判别函数;3)
10、
图像处理中边缘检测算法sobel与canny在应用上有什么区别?
答:sobel是基于梯度图像模值大小的检测算子,通常有水平和垂直两种算子。
canny算法实际上是将sobel算子应用两次,取不同于阈值,一个是低阈值,低阈值要包含像素全部的重要边缘,高阈值要尽量将全部的非重要边缘去除。首先进行去噪,寻找亮度梯度,使用滞后阈值进行,canny算子适合于用于不同的场合,不过速度较慢。
它的参数允许根据不同实现的特定要求进行调整以识别不同的边缘特性
sobel算子是其滤波算子的形式,用于提取边缘,可以利用快速卷积函数。但是sobel算子没有将图像主体与背景严格区分开来,没有基于图像灰度进行处理。