Codeforces Round #695 (Div. 2) E. Distinctive Roots in a Tree

这篇博客主要探讨了一种图论问题——寻找独特根。独特根是指在树形结构中,某个节点作为根时,其路径上没有重复值的节点。文章通过DFS遍历和树上差分的方法,解决了当一个节点的子树内存在与其值相同的节点时,该节点不能作为独特根的问题。同时,介绍了如何快速标记和更新状态,以确定有多少个节点可以作为独特根。
摘要由CSDN通过智能技术生成

传送门

题目大意

有n个点,如果其中一个点想成为独特根,那他每个路都不能有相同的值,有几个这样的独特根

题解

先任意设一个根,如果其中一个点a,他的子树中的点b有与a的值相同的值,那除了他的子树,其他的点为根,一定会有路经过a和b,所以除了他的子树,其他所有点都不行,反之,如果有非子树的点的值和a的值相同,那a的子树所有点也都不可取,为了快速标记,我们使用树上差分+dfs序,我的理解是后者为了方便最后的和值操作,而且标记子树也比较方便

#include<cstdio>
#include<vector>
#include<algorithm>
using namespace std;
const int MAX=2e5+5;
int total,n;
int a[MAX];
int in[MAX];
int out[MAX]; 
int cnt[MAX];    //每个数全局出现次数 
int vis[MAX];    //每个数遍历时出现次数 
int sum[MAX];    //记录差分数组 
bool have[MAX];  //判断是否出现过 
vector<int> value;
vector<int> edge[MAX];
void dfs(int index){
	in[index]=++total;
	int last=vis[a[index]]++; //last记录之前此权值的数量 
	for(int i=0;i<edge[index].size();i++){
		int to=edge[index][i];
		if(!have[to]){
			have[to]=1;
			int now=vis[a[index]];
			dfs(to);
			if(now<vis[a[index]]){
				sum[1]++;
				sum[n+1]--;
				sum[in[to]]--;
				sum[out[to]+1]++;
			}
		}
	}
	out[index]=total;
	if(last||vis[a[index]]!=cnt[a[index]]){
		sum[in[index]]++;
		sum[out[index]+1]--;
	}
}
int main(){
	scanf("%d",&n);
	for(int i=1;i<=n;i++){
		scanf("%d",&a[i]);
		value.push_back(a[i]);
	}
	for(int i=1;i<n;i++){
		int u,v;
		scanf("%d%d",&u,&v);
		edge[u].push_back(v);
		edge[v].push_back(u);
	}
	sort(value.begin(),value.end());
	value.erase(unique(value.begin(),value.end()),value.end());
	for(int i=1;i<=n;i++){
		a[i]=lower_bound(value.begin(),value.end(),a[i])-value.begin();
		cnt[a[i]]++;
	}
	have[1]=1;
	dfs(1);
	int ans=0;
	for(int i=1;i<=n;i++){
		sum[i]+=sum[i-1];
		if(!sum[i]){
			ans++;
		}
	}
	printf("%d",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值