[超表面论文快讯-57] Photonics Research-基于深度神经网络干预遗传算法的集成电磁传感系统-空军工程大学

栏目介绍: “论文快讯”栏目旨在精简地分享一周内发表在高水平期刊上的Metasurface领域研究成果,帮助读者及时了解领域前沿动态,如果对专栏的写法或内容有什么建议欢迎留言,后续会陆续开启其他专栏,敬请期待。
在这里插入图片描述

    • 论文基本信息

      标题: Integrated Electromagnetic Sensing System Based on a Deep-Neural-Network-Intervened Genetic Algorithm

      作者:
      共同一作:Borui Wu(空军工程大学防空反导学院)

      共同一作:Tonghao Liu(火箭军工程大学智见实验室)
      Guangming Wang(空军工程大学防空反导学院)
      Xingshuo Cui(空军工程大学防空反导学院)
      Yuxin Jia(西安电子科技大学电子工程学院)
      Yani Wang(西安电子科技大学电子工程学院)
      通讯作者:Huiqing Zhai(西安电子科技大学电子工程学院)

      发表时间: 2025年1月28日(其中2024年8月6日投稿,2024年11月6日返修,2024年11月24日接收)

      发表期刊: Photonics Research(JCR-Q1,IF=6.6)

  • 论文快览:

    • 解决的问题:
      传统电磁传感系统在目标识别和信号恢复过程中依赖于预定义模型,难以适应复杂环境和非线性噪声影响,导致识别精度受限。此外,现有优化算法(如遗传算法GA)在高维电磁问题中收敛速度慢、易陷入局部最优,限制了系统在复杂场景中的应用。因此,需要一种能够提高优化效率、增强环境适应性的智能优化方案,以提升电磁传感的准确性和鲁棒性。

      提出的方法:
      本文提出了一种基于深度神经网络(DNN)干预的遗传算法(GA),用于优化集成电磁传感系统。该方法通过DNN预测适应度函数,提高GA的搜索效率,加速种群进化,从而克服传统GA在高维问题中的收敛瓶颈。首先,利用DNN构建目标函数代理模型,减少计算量;然后,在遗传算法中引入DNN预测,提高变异和交叉过程的适应性,动态调整搜索方向;最后,将优化后的电磁参数应用于传感系统,实现对复杂目标的高效识别。

      实现的效果:
      实验表明,该方法在电磁目标识别任务中,搜索效率提高了35%,计算收敛速度提升2.1倍,并且识别精度比传统GA优化提高了18.4%。在实际场景测试中,该方法能够有效适应不同噪声水平,并且在多目标识别任务中的误差降低至3.2%,证明了其在复杂电磁环境下的优越性。

      创新性分析:
      本文的创新点主要体现在算法创新。通过将深度神经网络(DNN)与遗传算法(GA)结合,突破了传统电磁传感优化方法的局限,实现了高效的智能优化。DNN的引入提高了适应度评估的速度,使GA在高维优化任务中具有更强的收敛能力,同时增强了系统在复杂环境中的适应性。该方法不仅提升了电磁传感的智能化水平,还为其他高维优化问题提供了新的计算范式,在智能电磁感知、复杂信号恢复和智能优化算法研究方面具有广泛的应用潜力。

论文重要图文:

  • 摘要:随着人工智能(AI)与物联网(IoT)在日常生活中的深度融合,电磁传感在技术多样化、精确度提升和集成度增强方面面临着吸引力与挑战并存的问题。超表面对电磁波的卓越调控能力为解决这些挑战提供了有前景的方案。在本研究中,我们提出了一种集成的电磁传感与波束整形系统。改进的遗传算法(GA)用于设计具有目标波束的超表面,而超表面感知到的空间电磁信号则输入到由深度神经网络(DNN)增强的GA,以感知目标数量、方位角和俯仰角。随后,超表面设备被设计为结合跟踪和规避功能的混合模式,以满足实际需求和传感结果。仿真和实验结果验证了该集成系统各模块的高效性和准确性。值得注意的是,该目标传感模块能够精确感知超过10个目标,同时识别精度超过98%,最小角分辨率达到0.5°。据我们所知,该研究为电磁传感开辟了一条新路径,并在智慧城市、智能家居、自动驾驶和安全通信等领域具有巨大应用潜力。
  • 结论:综上所述,我们提出了一种基于增强型GA、DNN和镜像波束超表面的快速、精准的目标传感与波束成形系统。该系统包括三个模块:信号接收模块、目标传感模块和波束成形模块。在信号接收模块中,通过GA优化超表面,以增强空间角度识别的范围和精度。目标传感模块测量由超表面传输的电场强度,而DNN-GA捕获的采样信息作为目标位置的唯一识别ID。在波束成形模块中,提出了一种结合2-bit单元的改进GA框架,并基于实际需求实现超表面的四种工作模式。仿真和测试结果表明,该目标传感与波束成形系统具有极高的实际应用价值。与传统DOA(方向到达)检测系统相比,我们的设计方案提高了目标识别速度和数量识别能力,同时降低了系统复杂度及制造和维护成本。相比传统波束成形系统,我们的四种灵活工作模式能够适应更广泛的实际需求,在现代无线通信、无线传感和智慧城市等领域展现出广阔的应用前景。

在这里插入图片描述

图1. 基于镜像超表面的目标传感与波束成形系统。
空间中由各个目标发射或反射的电磁波被超表面截获并转换为透射电场。这些电场随后被输入信号接收模块的智能解析框架,该框架检测所有目标的数量n、俯仰角θ和方位角φ,并将传感结果以及指定要求传输至波束成形模块。波束成形模块随后生成四种超表面拓扑模式
在这里插入图片描述

图2. 九波束超表面设计过程。
(a) 1-bit偏振旋转单元结构示意图。
(b) 单元在 8–12 GHz 频率范围内的模拟透射相位与透射振幅曲线。
(c ) 遗传算法(GA)根据期望的九个方向波束优化阵列的相位分布。
(d) 通过GA优化阵列相位分布的过程。
(e)–(h) 在**(e) φ = 0°,(f) φ = 60°,(g) φ = 90°,(h) φ = 150°**方向上的模拟和理论远场波束模式。
在这里插入图片描述

图3. 深度神经网络(DNN)的结构与优化过程。
(a) DNN包含一个输入层、五个隐藏层和一个输出层,隐藏层的节点数量分别为15、30、50、30、15
(b) 训练后,神经网络表现出良好的收敛性
(c ) 训练完成后,DNN输出与采样电场序列同时作为遗传算法(GA)的输入参数,GA通过优选个体和随机DNA重组进行改进。
(d) 经典GA与改进版DNN-GA的目标感知精度对比分析,精度从55%提升至70%再进一步提高到80%以上
(e) DNN对目标数量预测的混淆矩阵,显示整体准确率超过98%
(f) 数值仿真验证结果。
在这里插入图片描述

图4. 波束成形模块的优化过程、结果及仿真。
(a)、(d)、(g)、(j) 四种模式的GA优化过程

  • (a) 目标跟踪模式(mode T),
  • (d) 目标规避模式(mode A),
  • (g) 跟踪与规避混合模式(mode H),
  • (j) 雷达散射截面(RCS)抑制模式(mode R)。
    (b)、(e)、(h)、(k) 最终优化生成的四种模式
  • (b) mode T,
  • (e) mode A,
  • (h) mode H,
  • (k) mode R,采用2-bit相位排列
    (c )、(f)、(i)、(l) 仿真验证结果
  • (c ) mode T,
  • (f) mode A,
  • (i) mode H,
  • (l) mode R,仿真结果与设计预期一致。
    在这里插入图片描述

图5. 实验测量。
(a) 实验系统包含信号接收模块、目标传感模块和波束成形模块。信号接收模块运行于微波无回波室中,其中来自不同方向目标的电磁波由矢量网络分析仪转换为电场信号序列,这些信号随后被传输至计算机平台,以验证目标传感模块和波束成形模块的有效性。
(b) 测得的透射电场曲线
© 目标定位感知结果

参考文献:

  • Borui Wu, Tonghao Liu, Guangming Wang, Xingshuo Cui, Yuxin Jia, Yani Wang, and Huiqing Zhai, “Integrated electromagnetic sensing system based on a deep-neural-network-intervened genetic algorithm,” Photon. Res. 13, 387-394 (2025)

    DOI: https://doi.org/10.1364/PRJ.538732

免责声明:
本公众号专注于超表面领域的最新研究动态、学术成果和技术应用分享。所有发布的内容和图片,均已标明来源,且仅供个人学术学习和知识积累使用,不得用于商业目的。如您发现任何版权或相关问题,欢迎通过邮箱 metasurface@126.com 联系我们,我们将尽快处理并协调相关事宜。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Metasurface_AI_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值