栏目介绍: “综述分享”栏目旨在分享超表面领域的精选综述论文,帮助读者系统了解超表面的研究现状、核心技术与应用前景,尤其是希望通过综述的分享能够促进更多的人关注到超表面!!!如果对专栏的写法或内容有什么建议欢迎留言,“论文快讯”栏目还是会保持每日一更,欢迎大家关注。
论文基本信息
标题: A guidance to intelligent metamaterials and metamaterials intelligence
作者:
通讯作者 :钱超(浙江大学-UIUC)
Ido Kaminer(以色列理工学院电气与计算机工程系)
通讯作者:陈红胜(浙江大学-UIUC)
发表时间: 2025年1月29日
发表期刊: Nature Communications(JCR-Q1,IF=14.9)
**图表数量:**图(7张)
**参考文献数量:**282
论文快览
**摘要:**超构材料与人工智能之间的双向相互作用最近引起了极大关注,激发科学家重新审视各自领域,从而催生了智能超构材料和超构材料智能的激增。由于人工智能具有强大的非线性拟合与泛化能力,人工智能有望作为材料敏感型替代电磁仿真器和高速计算核心,驱动众多自驱超构材料应用,例如隐形斗篷、成像、检测和无线通信。反过来,超构材料为基于波的模拟计算提供了多功能电磁操控器,作为对传统电子计算的有力补充。在本综述中,我们从统一视角回顾了这两个新兴领域的最新进展。对于智能超构材料,我们讨论了以深度学习为代表的人工智能如何简化光子设计、促进独立工作方式并挖掘潜在物理机制。对于超构材料智能,我们特别展开了三种典型类别的讨论,即基于波的神经网络、数学运算和逻辑运算,这些方法均直接在物理空间中执行计算、检测和推理任务。最后,我们指出了未来的挑战与展望,包括数据整理、知识迁移以及迫在眉睫的面向实践的问题,展望引领整个电磁空间自由管理的宏伟愿景。
结论:
**未来展望:**作者对未来的发展蓝图展望主要集中在以下几个方面:
在未来的发展蓝图中,作者首先指出,针对海量高质量数据难以获取的问题,可在数据层面建立更加开放的超材料数据共享文化,并通过如旋转几何结构、应用物理等效模型等方式实现多样化、低成本的数据增强。其次,在算法研究中,不仅要结合无监督和半监督学习来缓解对大量标注数据的依赖,还需深度挖掘不同任务间的物理内在联系与网络关联,从而构建更具解释性且能够互补的知识体系。尽管逆向设计算法已在元器件层面取得较好成果,但作者认为,要真正迈向智能化,需要面向变化迅速、场景复杂的环境,加强元器件与系统在“实时”或“就地”学习(on-site learning)以及知识共享方面的能力,克服传统预先训练模型在高动态场景下的滞后性。
在硬件层面,作者强调,多维度的电磁波调控能力决定了“智能超材料”与“超材料智能”之间交互所能达到的上限。发展全新的光子结构、集成有源器件或混合增益材料,以及拓展非线性模拟和多属性电磁波控制,对于高带宽通信、超灵敏传感乃至未来波域计算都有重要意义。但作者也指出,这些方向尚待更多成熟的硬件方案和理论体系支撑,如负电导超材料在微波中的增益与非线性应用还十分有限。
面对高吞吐、低时延的数据处理需求,作者认为智能超材料在某些关键领域可与传统电子计算形成互补:例如在天文射电数据处理、自动驾驶等需要实时决策的场景中,波域计算可减少电-光-电转换损耗并直接利用电磁波多维属性来提取关键信息。此外,作者也提醒,这一新兴方向还存在诸多亟待解决的问题,如训练过程对数据噪声的敏感性、不同层级计算模块级联时的对准误差与损耗累积等。
论文图表
图1 | 超构材料与人工智能的双向交互。
超构材料和人工智能如同两个相互啮合的齿轮。人工智能的繁荣彻底改变了传统的计算方法和超构材料的工作模式,最终形成智能超构材料。具体而言,智能超构材料体现在多功能设计、自动化超构器件以及物理发现等方面。反过来,超构材料提供了一个基于波动的通用平台,可在物理空间执行神经网络、数学运算和逻辑运算。我们将这一过程总结为超构材料智能化,因为无生命的超构材料被赋予了独立计算和分析的能力。
图2 | 基于深度学习的三种设计类别与正统网络结构。
(a) 第一种设计,即正向设计,旨在建立从材料表征(g空间)到物理响应(s空间)的快速映射。第二种设计,即逆向设计,与正向设计相反,但比其更为困难。第三种设计是关联物理响应本身,例如从低频到高频、从近场到远场。
(b) 各种深度学习算法可作为替代物理模型/数值模拟器,以加速和简化设计过程。除了计算机科学中拓展出的传统神经网络外,研究人员还探索了具有“局部特性”的独特网络。MLP,多层感知机。CNN,卷积神经网络。RNN,循环神经网络。SNN,脉冲神经网络。****
图3 | 超表面设计及相关技术的进展时间线。
(a) 电磁和光子器件设计的初步研究可追溯至1990年代,起始于射频组件的优化。在这一时期,广泛使用的算法包括拓扑优化、启发式算法以及简单的神经网络。2018年后,深度神经网络被广泛应用于超表面、光子晶体和等离子体光学的设计。
(b) 生成对抗网络可生成与需求光谱高度匹配的候选超表面图案。
© 知识继承网络面向多目标和形状不受限的超表面。每个继承神经网络(INN)承载来自“母代”超表面的知识,并随后组装成带有组装神经网络(ASNN)的“子代”超表面。
(d) 通过修正贝叶斯神经网络对超表面设计的不确定性进行量化。****
图4 | 超表面的光谱关联。
(a) 低频到高频的光学响应推断非常有用,但由于双向非唯一性问题,具有挑战性。这种关联可用于恢复高分辨率图像,并减少高频仿真时的密集网格计算时间。
(b) 为解决这一问题,提出了一种由两个级联网络组成的生成-消除网络,每个网络由一个编码器、潜在空间和解码器构成。
© 对于给定的输入(低频),生成网络可生成多个候选(高频),消除网络则将每个候选逆向映射回原始空间。通过计算输入与次级候选之间的欧几里得距离来选取最优候选。
(d) 太赫兹超表面的设计示例。
图5 | 智能自适应超构器件及更新物理。
(a) 一种集成感知-决策-执行的通用智能自适应超构器件架构。外部环境和超构器件的动态变化被实时监测,并反馈至人工智能驱动的决策模块,同时考虑用户需求。随后,可重构超表面执行决策模块输出的指令。
(b) 代表性深度学习超构器件应用。
© 人工智能通过三种途径促进物理学发展。
(d) 利用物理信息神经网络(PINNs)揭示边缘等离子体动力学。
(e) 在近场放置局域共振超构材料,可将成像信息编码到远场,使神经网络能够重建和分类数字。
(f) 在工作带宽、自由形态和入射角方面推进超表面隐身的极限。左侧展示了考虑近场耦合效应后的反射效率提升
图6 | 基于波动的神经网络架构。
基于波动的神经网络由四个关键模块构建,即输入、输出、权重和非线性。
(a) 权重以严格的数学形式塑造输入光,可通过集成光子硬件、衍射神经网络和散射神经网络实现。
(b) 输入由各种光学属性描述,包括波长、强度和偏振。
© 输出展示分类、脉冲整形、检测、成像及其他功能的结果。
(d) 非线性激活函数在学习复杂推理过程中起关键作用。然而,其实现仍然是巨大挑战,因为光学非线性相对较弱。目前,相关探索包括材料非线性和结构非线性。
图7 | 基于波动的数学运算和逻辑运算。
(a) k空间中线性算子的传递函数。通过将输出 g(x) 关联至输入 f(x),可以探索封闭形式的系统以求解数学方程。
(b) 基于薄金属膜支持表面等离子体激元(SPPs)和平面光子芯片的空间类比微分器。
© 基于反射超表面阵列和通过介电薄膜波导的共振隧穿实现的空间积分。
(d) 超构材料平台可求解一般形式的积分方程。
(e) 基于构造性/破坏性干涉效应的逻辑运算,包括输入光信号之间的线性和非线性干涉。
(f) 硅光子平台上的拓扑优化超紧凑逻辑器件。
(g) 基于纳米级等离子体狭缝波导的逻辑门。
(h) 基于衍射神经网络的通用逻辑运算。
参考文献:
- Qian, C., Kaminer, I. & Chen, H. A guidance to intelligent metamaterials and metamaterials intelligence. Nat Commun 16, 1154 (2025).
DOI:https://doi.org/10.1038/s41467-025-56122-3
免责声明:
本公众号专注于超表面领域的最新研究动态、学术成果和技术应用分享。所有发布的内容和图片,均已标明来源,且仅供个人学术学习和知识积累使用,不得用于商业目的。如您发现任何版权或相关问题,欢迎通过邮箱 metasurface@126.com 联系我们,我们将尽快处理并协调相关事宜。