[超表面论文快讯-117] Nature Communications-突破大孔径宽带纳米光学光谱带宽极限-华盛顿大学

栏目介绍: “论文快讯”栏目旨在精简地分享一周内发表在高水平期刊上的Metasurface领域研究成果,帮助读者及时了解领域前沿动态,如果对专栏的写法或内容有什么建议欢迎留言,后续会陆续开启其他专栏,敬请期待。
在这里插入图片描述

  • 论文基本信息:

    标题:Beating spectral bandwidth limits for large aperture broadband nano-optics

    作者
    通讯作者 Johannes E. Fröch(华盛顿大学物理系);
    Praneeth Chakravarthula(北卡罗来纳大学教堂山分校计算机科学系);
    Jipeng Sun(普林斯顿大学计算机科学系);
    Ethan Tseng(普林斯顿大学计算机科学系);
    Shane Colburn(华盛顿大学电气与计算机工程系);
    Alan Zhan(Tunoptix公司);
    Forrest Miller(华盛顿大学电气与计算机工程系);
    Anna Wirth-Singh(华盛顿大学物理系);
    Quentin A. A. Tanguy(华盛顿大学电气与计算机工程系);
    Zheyi Han(华盛顿大学电气与计算机工程系);
    Karl F. Böhringer(华盛顿大学生物工程系);
    Felix Heide(普林斯顿大学计算机科学系);
    通讯作者 Arka Majumdar(华盛顿大学物理系)

    发表时间2025年3月28日(其中2024年8月27日投稿,2025年3月13日接收)
    发表期刊:Nature Communications(JCR-Q1,IF=14.7)

  • 论文快览:

    • 解决的问题
      在消费电子设备(如智能手机、无人机)对紧凑型光学系统需求激增的背景下,传统折射透镜的庞大体积与超透镜(meta-optics)的色差问题形成核心矛盾。现有超透镜设计受限于衍射特性,虽在小孔径(~100 μm)或窄波段(<10 nm)实现近衍射极限成像,但大孔径(>4 mm)宽带可见光(450-650 nm)成像因色差与空间频率响应快速衰减而无法实用。尤其在高数值孔径(NA)场景中,传统超透镜的调制传递函数(MTF)在100 lp/mm以上空间频率的对比度骤降至<5%,且缺乏与CMOS传感器及计算重建算法的协同优化框架,制约了其在消费级摄像头中的替代潜力。

      提出的方法
      本研究提出端到端协同设计框架,通过两阶段优化策略实现大孔径宽带超透镜的色差校正。首先基于旋转对称性约束与瑞利-索末菲衍射积分,采用可微分光学模型优化1 cm孔径超透镜的纳米散射体相位分布,最大化450-650 nm波段焦点强度;随后结合物理先验与概率扩散模型,开发计算重建算法以补偿残余像差。超透镜采用硅氮化物(SiN)纳米柱阵列(周期250 nm,高度800 nm)的晶圆级制造工艺,通过电子束光刻与反应离子刻蚀实现亚波长结构一致性(误差<±10 nm),并与商用CMOS传感器直接集成,避免中继透镜引入的NA失配。

      实现的效果
      实验验证1 cm孔径、f/2超透镜在可见光波段(480-680 nm)的线对对比度(MTF)达20%(100 lp/mm),经计算重建后提升至40%,与同参数折射透镜性能相当。在30°视场角下,超透镜的PSF半高全宽(FWHM)较折射透镜缩小35%,边缘视场成像细节保留率提升50%。视频成像中实现19 fps帧率与5 ms曝光时间,成功捕捉快速运动场景(如硬币抛掷、弹跳球变形)。与复合智能手机镜头对比,单超透镜系统在10°以上大视场角的MTF对比度(70 lp/mm)超过折射透镜15%,验证了其在复杂场景中的鲁棒性。

      创新点分析
      本研究通过物理-算法-系统跨层创新颠覆了超透镜的色差范式:理论层面,首创旋转对称约束下的可微分宽带优化模型,将109量级散射体参数空间压缩至104,解决大孔径超透镜的设计复杂度瓶颈;算法层面,开发概率扩散先验与维纳反卷积融合的重建框架,将计算后端与光学像差特性深度耦合,实现跨波段的MTF均衡化;系统层面,通过晶圆级SiN-on-quartz工艺与3D打印封装,验证超透镜与CMOS传感器的无中继集成,推动超透镜从实验室器件向消费电子标准组件的跨越。相较于传统色散工程或多层衍射方案,该工作首次证明1 cm孔径超透镜在可见光全波段与折射透镜的成像性能等价性,为智能手机、AR/VR设备的超薄光学系统提供了可扩展范式。

论文重要图文:

摘要:平面光学元件作为替代与增强折射光学系统的新兴成像传感技术方案备受关注。然而色差问题对衍射型平面光学元件构成根本性限制,致使大孔径、小f数平面光学元件始终无法实现可见光波段的高质量宽带成像。本研究通过协同计算重构的超构光学元件设计,突破固有光谱带宽限制,成功实现可见光波段宽带成像。我们推导出宽带1厘米孔径f/2平面光学元件的必要条件:可见光波段内对角线视场角30°,空间频率100线对/毫米时系统平均调制传递函数(MTF)对比度≥20%(70线对/毫米以下≥30%)。最终采用同轴双孔径系统,基于配对捕获成像数据的深度学习重构方法训练宽带成像超构光学元件。本工作从根本上挑战了单一大孔径超构光学元件无法获取高质量全彩图像的固有观念。

在这里插入图片描述

图1 | 大孔径全彩超构光学元件设计与加工。a) 实现宽带聚焦的设计挑战示意图。通过约束传播仅作用于轴上场,将所需散射体设计空间从109压缩至104。b) 宽带能力通过两阶段优化实现:首先设计超构光学元件在密集波长采样下实现最大焦斑强度(仅优化中心点扩散函数强度),获得三波长(优化集内)沿光轴的扩展焦斑轮廓;随后将该相位分布作为端到端计算成像优化方法的初始条件。c) 1厘米孔径超构光学元件对生动场景的直接成像效果实物图。d) 同孔径与f数折射透镜的并列对比。e) 3D打印支架集成1厘米孔径宽带超构光学元件的相机模组。f) 超构光学元件中心区域光学显微镜图像。g,h) 银散射体结构的扫描电子显微镜(SEM)图像:g) 俯视视角,h) 30°倾斜视角。i) 宽带超构光学元件孔径尺寸对比。j) 相同器件菲涅尔数对比。
在这里插入图片描述

图2 | 超构光学元件性能测量。a) 不同入射角下测量点扩散函数(PSF)的光路示意图。b,c) 0°、5°、10°、15°入射角时折射透镜与宽带端到端超构光学元件实测PSF对比。比例尺:0°、5°为40 μm,10°、15°为200 μm。d) 多波长下测量光学元件对比度的光路示意图。e) 宽带超构光学元件在580 nm波长下捕获的USAF 1951分辨率靶第5-7组原图(20倍放大)。f) 计算重构后的图像效果。g) 双曲面(红)、折射(蓝)与端到端设计(绿)元件解卷积前后调制传递函数(MTF)对比,误差棒表示强度平均值的标准差。h) 解卷积前后线对对比度及相对差异对比(自上而下:折射透镜、双曲面超构透镜、端到端超构光学元件)。i) 折射透镜与宽带超构光学元件在测量波段内平均线对对比度对比。
在这里插入图片描述

图3 | 超构光学成像与折射光学对比。a-d) OLED屏幕投影图像经不同光学元件捕获后通过维纳滤波重构效果:(a)真实场景,(b)折射透镜,(c)双曲面超构透镜,(d)端到端超构光学元件。e-g) 真实场景(e)与折射透镜(f)、端到端超构光学元件(g)的局部放大对比。h-j) 实景宽带成像对比:(h)实景布置,(i)超构光学成像,(j)折射透镜成像,中心(绿框)与离轴(蓝框)区域细节对比。k-m) 动态场景连续帧捕获:(k)人物跳跃,(l)抛硬币,(m)日光环境下拍球运动。
在这里插入图片描述

图4 | 基于学习后端的宽带成像。a) 使用真实场景图像训练神经网络的流程:超构光学相机与复眼相机同步采集数据,训练扩散模型提升图像质量。b) 复眼折射镜头、宽带超构光学元件物理逆滤波与学习后端成像效果对比。c) 标注区域细节放大对比,展示学习后端对纹理细节的恢复能力。

参考文献:

  • Fröch, J.E., Chakravarthula, P., Sun, J. et al. Beating spectral bandwidth limits for large aperture broadband nano-optics. Nat Commun 16, 3025 (2025). DOI:https://doi.org/10.1038/s41467-025-58208-4

免责声明:
本公众号专注于超表面领域的最新研究动态、学术成果和技术应用分享。所有发布的内容和图片,均已标明来源,且仅供个人学术学习和知识积累使用,不得用于商业目的。如您发现任何版权或相关问题,欢迎通过邮箱 metasurface@126.com 联系我们,我们将尽快处理并协调相关事宜。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Metasurface_AI_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值