运行 nvcc --version
命令显示无法识别 nvcc
,说明 CUDA 工具包未正确安装或未添加到系统路径中。解决步骤如下:
1. 安装 CUDA 工具包
首先,确保已经安装 CUDA 工具包。您可以从 NVIDIA CUDA Toolkit 下载并安装适用于您操作系统的 CUDA 工具包。
2. 添加 CUDA 工具包到系统路径
安装完成后,需要将 CUDA 工具包的 bin
目录添加到系统路径中。以下是添加路径的步骤:
Windows 系统
- 打开“控制面板”。
- 选择“系统和安全”,然后选择“系统”。
- 选择“高级系统设置”,然后选择“环境变量”。
- 在“系统变量”部分,找到并选择“Path”变量,然后选择“编辑”。
- 在“编辑环境变量”窗口中,选择“新建”,然后添加 CUDA 工具包的
bin
目录路径(通常是C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\bin
,具体路径请根据您的安装位置调整)。 - 确定所有对话框并关闭。
然后,重新打开命令提示符窗口,运行以下命令以检查 CUDA 工具包是否已正确安装并添加到路径中:
nvcc --version
如果正确安装并添加路径,应该看到 CUDA 版本信息。
3. 检查 NVIDIA 驱动
确保您的系统安装了正确版本的 NVIDIA 驱动。可以通过运行以下命令检查 NVIDIA 驱动是否已正确安装:
nvidia-smi
4. 安装适用于 CUDA 的 PyTorch 版本
确保已安装适用于 CUDA 的 PyTorch 版本。如果尚未安装,可以运行以下命令:
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117
5. 运行测试代码
安装完成并添加路径后,可以运行以下测试代码,检查 CUDA 是否可用:
import torch
print(torch.cuda.is_available())
如果输出 True
,说明 CUDA 设备已被 PyTorch 检测到。
总结
通过正确安装 CUDA 工具包、添加系统路径、安装 NVIDIA 驱动以及适用于 CUDA 的 PyTorch 版本,可以解决 torch.cuda.is_available()
返回 False
的问题。请按照上述步骤逐一检查和解决。