The Radon Transform

转载 2011年10月14日 10:48:34


In recent years the Hough transform and the related Radon transformhave received much attention. These two transforms are able to transformtwo dimensional images with lines into a domain of possible line parameters,where each line in the image will give a peak positioned at the correspondingline parameters. This have lead to many line detection applications withinimage processing, computer vision, and seismics.

Several definitionsof the Radon transform exists, but the are related, and a very popularform expresses lines in the form rho=x*cos(theta)+y*sin(theta), where thetais the angle and rho the smallest distance to the origin of the coordinatesystem. As shown in the two foloowing definitions (which areidentical), the Radon transform for a set of parameters (rho,theta) isthe line integral through the image g(x,y), where the line ispositioned corresponding to the value of (rho,theta). The delta() isthe Dirac delta function which is infinite for argument 0 and zero forall other arguments (it integrates to one), and in digital versions theKronecker delta is used.

or the identical expression

Using this definition an image containing two lines are transformedinto the Radon transform shown to the right

It can be seen that two very bright spots are found in the Radontransform, and the positions shown the parameters of the lines in theoriginal image. A simple thresholding algorithm could then be used to pick out the line parameters, and given that the transform is linearmany lines will just give rise to a a set of distinct point in theRadon domain. In my Ph.D. thesis the relationship with the Houghtransform is investigated, and it is shown that the Radon transformand the Hough transform are related but NOT the same.


The very strong property of the Radon transform is the ability to extractlines (curves in general) from very noise images as shownbelow. Theoretically results regarding the influence of noise can befound in Chapter 5 of my Ph.D. thesis.

In general many lines hidden in an image can be transformed into aset of peaks, where the value in the Radon domain (to the right)reflect the value on the individual lines. From the Radon transform,shown to the right, it can be seen that crossing lines makes noproblem.

The Generalized Radon transform

It is possible to generalizethe Radon- (and Hough) transform in order to detect parameterizedcurves with non-linear behaviour. In chapter 4 of my Ph.D. thesis afast algorithm can be found that used the generalized Hough transformto create irregular regions in the parameter domain corresponding tothe parameter regions of interest. Subsequently, it uses thegeneralized Radon transform within these regions in order to estimatethe curve parameter with high resolution.

SU拉冬变换(radon transform)转自[蠢树]

  • ice_fire3
  • ice_fire3
  • 2011年08月23日 09:44
  • 2350


  • utimes
  • utimes
  • 2013年12月19日 11:32
  • 4897

Radon变换入门matlab CT原理 简介 图像投影,就是说将图像在某一方向上做线性积分(或理解为累...
  • eyefamily
  • eyefamily
  • 2011年12月05日 16:04
  • 23139


基于纹理分析方法,提取掌静脉图像的方向、频率、相位、幅度等纹理特征: 这类方法大多借鉴掌纹识别方法,通过各种滤波器提取静脉图像纹理特征,编码纹理特征并进行匹配识别。 它有3 个核心步骤: 滤波器选择...
  • Enjolras_fuu
  • Enjolras_fuu
  • 2016年12月23日 20:06
  • 403


Radon变换 本文转自:  两维情况下radon变换大致可以这样理解:一个平面内沿不同...
  • h_wlyfw
  • h_wlyfw
  • 2014年02月18日 15:56
  • 4027


  • lpsl1882
  • lpsl1882
  • 2016年06月29日 13:15
  • 5281


  • rain_promise
  • rain_promise
  • 2017年04月26日 19:46
  • 2033


本人最近在研究Radon变换,在查阅了各种资料之后在此写下个人的理解,希望与各位牛牛进行交流共同进步,也使得理解更加深刻些。 Radon变换的本质是将原来的函数做了一个空间转换,即,将原来的XY平...
  • sinat_26681907
  • sinat_26681907
  • 2016年08月22日 15:58
  • 21096


Radon变换和Hough变换类似,最初适用于检测图像中的直线(例如笔直的街道边沿、房屋的边沿、笔直的电线等)。 关于Hough变换,可以参考OpenCV中的代码和示例(其实除了Hough Lines...
  • von_Ryan_Hack
  • von_Ryan_Hack
  • 2014年12月11日 21:36
  • 9668


简介 图像投影,就是说将图像在某一方向上做线性积分(或理解为累加求和)。如果将图像看成二维函数f(x, y),则其投影就是在特定方向上的线性积分,比如f(x, y)在垂直方向上的线性积分就是其在x轴...
  • qq_34289431
  • qq_34289431
  • 2016年08月29日 20:07
  • 2168
您举报文章:The Radon Transform