明月清风

不觉晓

评估指标:混淆矩阵、PR、mAP、ROC、AUC

TP、TN、FP、FN TP,即 True Positive,预测为正样本,实际也为正样本的特征数。 TN,即 True Negative,预测为负样本,实际也为负样本的特征数。 FP,即 False Positive,预测为正样本,实际为负样本的特征数。 FN,即 False N...

2018-12-18 19:21:34

阅读数 201

评论数 0

梯度下降优化算法

文章目录梯度下降算法MomentumNAGAdagradAdadeltaRMSpropAdam算法的选择 原文:An overview of gradient descent optimization algorithms 梯度下降算法 梯度下降算法(Gradient Descent Op...

2018-12-18 19:19:56

阅读数 152

评论数 0

分类评分函数 score function

从图像到标签分值的映射 一个线性映射: f(xi,W,b)=Wxi+b\displaystyle f(x_i,W,b)=Wx_i+bf(xi​,W,b)=Wxi​+b 其中,参数 WWW 为权重(weights),bbb 称为偏差向量(bias vector) 一个将图像映射到分类分值的例子: ...

2018-12-14 14:36:31

阅读数 1207

评论数 0

权重初始化

在开始训练网络之前,还需要初始化网络的参数。 错误:全零初始化。让我们从应该避免的错误开始。在训练完毕后,虽然不知道网络中每个权重的最终值应该是多少,但如果数据经过了恰当的归一化的话,就可以假设所有权重数值中大约一半为正数,一半为负数。这样,一个听起来蛮合理的想法就是把这些权重的初始值都设为0吧,...

2018-12-13 18:01:10

阅读数 406

评论数 0

偏差、方差、欠拟合、过拟合、学习曲线

欠拟合 under fitting 欠拟合(under fitting),这个问题的另一个术语叫做 高偏差(High bias)。这两种说法大致相似,意思是它没有很好地拟合训练数据。 过拟合 over fitting 过度拟合(over fitting),另一个描述该问...

2018-12-13 13:06:41

阅读数 190

评论数 0

逻辑回归 logistic regression

虽然名字里有回归,但实际上,逻辑回归算法是一种分类算法。 文章目录假设函数决策边界逻辑回归的代价函数简化代价函数以及梯度下降高级优化优点缺点一对多分类问题正规化欠拟合过拟合解决过拟合问题正规化优化的目标 假设函数 逻辑回归的假设函数表达式: hθ(x)=g(θTx)h_{\theta}(x) = ...

2018-12-13 12:37:21

阅读数 29

评论数 0

数据集划分

使用数据集时,一般将其分为三段:训练集、验证集、测试集。 测试集 决不能使用测试集来进行调优,会造成算法对测试集过拟合。应该把测试集看做非常珍贵的资源,不到最后一步,绝不使用它。 验证集 由于测试数据集只使用一次,所以,从训练集中取出一部分数据作为验证集(validation set)。验...

2018-12-13 11:43:29

阅读数 128

评论数 0

正则化方法:数据增强、regularization、dropout

正则化主要用于避免过拟合的产生和减少网络误差,选择经验风险与模型复杂度同时较小的模型。 正则化项 正则化一般具有如下形式: J(w,b)=1m∑i=1mL(f(x),y)+λR(f)J(w,b)= \frac{1}{m} \sum_{i=1}^{m}L(f(x),y)+\lambda R(f)J(...

2018-12-12 22:49:22

阅读数 474

评论数 0

梯度下降 gradient descent

文章目录导数偏导数方向导数梯度梯度下降算法 (Gradient Descent) 导数 导数反映的是函数 f(x)f(x)f(x) 在 xxx 轴上某一点处沿着 xxx 轴正方向的变化率/变化趋势。 f′(x0)=lim⁡Δx→0ΔyΔx=lim⁡Δx→0f(x0+Δx)−f(x0)Δx...

2018-12-12 19:39:05

阅读数 174

评论数 0

线性回归 linear regression

文章目录一元线性回归函数模型代价函数 回归一词,指的是我们根据之前的数据,预测出一个准确的输出值。 一元线性回归 函数模型 一元线性回归 (linear regression) 的函数模型: hθ(x)=θ0+θ1∗xh_{θ}(x) = θ_0 + θ_1 * xhθ​(x)=θ0​+θ1​∗x...

2018-12-12 13:28:39

阅读数 36

评论数 0

特征缩放 feature scaling

“标准化” 和 “归一化” 这两个中文词要指代四种Feature scaling(特征缩放)方法。 样本不同特征的取值范围如果不一样,可能导致迭代很慢,为了减少特征取值的影响,可以对特征数据进行缩放,加速算法的收敛。 Rescaling 归一化,一般是将数据映射到指定的范围,用于去除不同维度数据的...

2018-12-12 12:28:43

阅读数 66

评论数 0

学习速率 learning rate

学习速率的选取策略 运用梯度下降算法进行优化时,权重的更新规则中,在梯度项前会乘以一个系数,这个系数就叫学习速率 ααα : 如果学习速率太小,则会使收敛过慢。 如果学习速率太大,则会导致代价函数振荡,迭代过快,梯度下降法可能会越过最低点,甚至可能发散。 学习速率的取值取决...

2018-12-11 22:17:06

阅读数 591

评论数 0

目标函数、损失函数、代价函数

损失函数 (Loss function) ,是单个样例 iii 的损失/误差: ∣hθ(xi)−yi∣| h_{θ}(x^i) - y^i |∣hθ​(xi)−yi∣ 代价函数 (Cost function) ,是对数据集整体的误差描述,也就是损失函数的总和的平均,有没有这个平均其实不会影...

2018-12-11 14:04:42

阅读数 83

评论数 0

矩阵运算

文章目录NumPy 中的数组和矩阵创建数组矩阵加法 / 减法矩阵数乘矩阵转置矩阵乘法单位矩阵 (Identity matrix)逆矩阵(matrix inversion) NumPy 中的数组和矩阵 NumPy 是一个关于矩阵运算的库,包含两种基本的数据类型:数组(array )和矩阵(matri...

2018-12-11 08:44:58

阅读数 94

评论数 0

Light-Head R-CNN

文章目录论文信息two-stage 检测器的速度瓶颈网络架构对比主干网络 BackboneThin feature maps for RoI warpingRPNLight-Head R-CNN 精度提升技巧Light-Head R-CNN 速度提升技巧 论文信息 原文地址:Light-Head ...

2018-12-10 15:29:22

阅读数 212

评论数 0

Faster R-CNN

文章目录论文信息Faster R-CNN 框架锚点 Anchors区域提议网络 Region Proposal Networks(RPN)Proposal LayerRPN 损失函数 论文信息 原文地址:Faster R-CNN: Towards Real-Time Object Detectio...

2018-12-09 22:24:11

阅读数 120

评论数 0

Fast R-CNN

文章目录论文信息R-CNN 的缺点Fast R-CNN 算法改进Fast R-CNN 网络结构分类器的选择RoI Pooling尺度不变性损失函数 论文信息 原文地址:Fast R-CNN 系列论文:地址 代码实现:地址 作者:Ross Girshick 成就:同样使用最大规模的网络,Fast R...

2018-12-08 22:40:26

阅读数 42

评论数 0

R-CNN

文章目录论文信息RCNN 算法步骤Selective Search区域合并方式多样化策略相似度计算规则Graph-Based Image Segmentation 分割算法候选框缩放CNN 特征提取CNN 训练分类器训练边框回归 Bounding-Box regression 论文信息 原文地址:...

2018-12-08 12:47:38

阅读数 54

评论数 0

Xception

文章目录论文信息Xception 设计进化深度可分离卷积 Depthwise Separable ConvolutionXception 网络架构Xception 微调 论文信息 原文地址: Xception:Deep Learning with Depthwise Separable Convo...

2018-12-06 12:44:18

阅读数 420

评论数 1

ResNet

文章目录论文信息ResNet 设计动机 论文信息 原文地址: Deep Residual Learning for Image Recognition 作者:Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun 成就:模型赢得了ImageNet检测任务...

2018-12-05 21:06:15

阅读数 116

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭