不用软件把视频切片的方法

不用软件把视频切片的方法

有些时候会需要把长视频切成许多小片段(例如做视频推流或gif的时候),下载工具会比较麻烦,这里告诉大家一个不用下载任何工具的简单方法
新建一个文件夹(随便命名),用来存放将会用到的代码文件和视频。

1.在这个文件夹里再建新建一个文件夹和一个txt文档,文件夹命名为“output”,txt文档随便命名,这里命名为“转码.txt”吧

在这里插入图片描述

2.打开txt文档,把下面这串代码复制进去,然后保存。

@echo

rem 开始转码…

rem 正在转码…

ffmpeg -i video.mp4 -c:v libx264 -c:a aac -strict -2 -f hls -hls_list_size 0 -hls_time 5 output/playlist.m3u8

pause
在这里插入图片描述

3.然后把txt文档的后缀改为“bat”,文档就变成了一个bat脚本,此时工具就准备好了,接下来处理视频

在这里插入图片描述

4.把需要切片的视频复制到bat脚本同一个文件夹里,视频文件的名称改为”video",后缀不需要改。

如果视频的后缀不是“mp4”,就要把bat文档里的内容改动一下,具体如下

在这里插入图片描述

5.右键单击bat文档,点“编辑”,找到图中这个标注的位置,把“mp4”改成和视频后缀一样,然后保存。例如:视频是“video.avi”,就把“mp4"改为”avi“。注意不要多余的符号或空格

在这里插入图片描述

6.双击bat文件,系统就开始给视频切片了,切片完成后在命令下方有停止的提示。切片的数量多少看视频的长短,每一片大约几秒到十秒左右,有些长视频能切出上千个片段,我们这里只用了一个15秒的短视频举例

在这里插入图片描述

### 自适应切片技术及其相关软件 在IT领域中,“自适应切片”通常指基于特定需求动态调整数据分割的技术,广泛应用于计算机视觉、医学影像分析以及深度学习等领域。以下是几个可能涉及自适应切片功能的相关工具和方法: #### MATLAB中的适用工具箱 Tensor Toolbox 是一个专注于张量分解和优化的MATLAB工具箱[^1]。虽然其主要用途并非直接针对“自适应切片”,但它可以用于多维数据分析,在某些场景下能够间接支持复杂的分块操作。 另外,Computer Vision Toolbox 提供了一系列图像处理函数,其中包括区域划分等功能。这些功能可用于实现简单的自适应切片逻辑,特别是在需要根据不同条件自动裁剪或分区的情况下非常有用。 #### 基于Transformer架构的方法 从最新的研究进展来看,Vision Transformer (ViT) 及其变体展示了强大的灵活性,尤其是在处理复杂输入结构时。例如,在一篇关于放射学应用的文章提到 ChatGPT 的优势与局限性的同时也暗示了 AI 技术如何改进医疗成像诊断流程[^2]。尽管这里并未具体提及自适应切片,但现代AI框架确实提供了构建此类系统的可能性。 进一步地,有研究表明通过引入预文本标记机制并结合任务增强器模块,可以在不显著增加计算成本的前提下提升模型性能[^3]。这种方法本质上允许系统根据上下文信息灵活调整内部表征方式,从而实现了某种程度上的“自适应”。 此外,在视频处理方面也有实验表明 TokenLearner 结合 Video Vision Transformer 架构能够在保持高效的同时捕捉时间维度的变化特性[^4]。这种设计理念同样适用于其他类型的序列化或多模态数据集,其中就包含了类似于自适应切片的功能组件。 #### Python库推荐 如果倾向于开源解决方案,则可考虑以下几种Python包作为起点: - **scikit-image**: 这是一个流行的图像处理库,拥有丰富的API接口可以帮助开发者快速原型开发各种定制化的切割方案。 - **PyTorch/TensorFlow Add-ons**: 主流深度学习框架均提供扩展插件集合,里面往往包含了一些高级采样策略可供借鉴。 ```python import numpy as np from skimage.util import view_as_blocks def adaptive_slice(image, block_size=(8, 8)): """Perform an example of simple adaptive slicing.""" blocks = view_as_blocks(np.array(image), block_size=block_size) return blocks.reshape(blocks.shape[0]*blocks.shape[1], *block_size) # Example usage: image_data = [[...]] # Your input image data here. result = adaptive_slice(image_data, block_size=(16, 16)) print(result.shape) ``` 上述代码片段展示了一种基础版本的自定义切片实现思路,实际项目中可以根据业务特点进一步优化算法细节。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值